IDEAS home Printed from https://ideas.repec.org/a/wly/jforec/v43y2024i5p1278-1293.html
   My bibliography  Save this article

Hybrid convolutional long short‐term memory models for sales forecasting in retail

Author

Listed:
  • Thais de Castro Moraes
  • Xue‐Ming Yuan
  • Ek Peng Chew

Abstract

This study proposes novel sales forecasting approaches that merge deep learning methods in a hybrid model. Long short‐term memory (LSTM) is adopted for modeling the temporal characteristics of the data, whereas the convolutional neural network (CNN) focuses on identifying and extracting relevant exogenous information. We propose stacked (S‐CNN‐LSTM) and parallel (P‐CNN‐LSTM) hybrid architectures to understand complex time series data with varying seasonal patterns and multiple products correlations. The performance drivers of both architectures were empirically tested with a real‐world multivariate retail dataset and outperformed when compared with simple neural network architectures and standard autoregressive methods for short and long‐term forecasting horizons. When compared with traditional predictive approaches, the proposed hybrid models reduce the computational complexity while providing flexibility and robustness.

Suggested Citation

  • Thais de Castro Moraes & Xue‐Ming Yuan & Ek Peng Chew, 2024. "Hybrid convolutional long short‐term memory models for sales forecasting in retail," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(5), pages 1278-1293, August.
  • Handle: RePEc:wly:jforec:v:43:y:2024:i:5:p:1278-1293
    DOI: 10.1002/for.3073
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/for.3073
    Download Restriction: no

    File URL: https://libkey.io/10.1002/for.3073?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jforec:v:43:y:2024:i:5:p:1278-1293. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/2966 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.