Extreme Learning Machine to Analyze the Level of Default in Spanish Deposit Institutions || Análisis de la morosidad de las entidades financieras españolas mediante Extreme Learning Machine
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- McNelis, Paul D., 2004. "Neural Networks in Finance," Elsevier Monographs, Elsevier, edition 1, number 9780124859678.
- Wong, W.K. & Guo, Z.X., 2010. "A hybrid intelligent model for medium-term sales forecasting in fashion retail supply chains using extreme learning machine and harmony search algorithm," International Journal of Production Economics, Elsevier, vol. 128(2), pages 614-624, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Daniela Pencheva, 2020. "Use of Factors Related to the Consumption of Fast Moving Consumer Goods in Business Intelligence System for Managing Orders to Suppliers in Retail Chain," Izvestia Journal of the Union of Scientists - Varna. Economic Sciences Series, Union of Scientists - Varna, Economic Sciences Section, vol. 9(2), pages 124-135, August.
- Lalou Panagiota & Ponis Stavros T. & Efthymiou Orestis K., 2020. "Demand Forecasting of Retail Sales Using Data Analytics and Statistical Programming," Management & Marketing, Sciendo, vol. 15(2), pages 186-202, June.
- Anderson, Richard G. & Binner, Jane M. & Schmidt, Vincent A., 2012.
"Connectionist-based rules describing the pass-through of individual goods prices into trend inflation in the United States,"
Economics Letters, Elsevier, vol. 117(1), pages 174-177.
- Richard G. Anderson & Jane M. Binner & Vincent A. Schmidt, 2011. "Connectionist-based rules describing the pass-through of individual goods prices into trend inflation in the United States," Working Papers 2011-007, Federal Reserve Bank of St. Louis.
- Cabrera Llanos Agustín Ignacio & Ortíz Arango Francisco, 2012. "Pronóstico del rendimiento del IPC (Índice de Precios y Cotizaciones)mediante el uso de redes neuronales diferenciales," Contaduría y Administración, Accounting and Management, vol. 57(2), pages 63-81, abril-jun.
- Md. Iftekharul Alam Efat & Petr Hajek & Mohammad Zoynul Abedin & Rahat Uddin Azad & Md. Al Jaber & Shuvra Aditya & Mohammad Kabir Hassan, 2024. "Deep-learning model using hybrid adaptive trend estimated series for modelling and forecasting sales," Annals of Operations Research, Springer, vol. 339(1), pages 297-328, August.
- Theodoros Anagnostopoulos & Grigorios L. Kyriakopoulos & Stamatios Ntanos & Eleni Gkika & Sofia Asonitou, 2020. "Intelligent Predictive Analytics for Sustainable Business Investment in Renewable Energy Sources," Sustainability, MDPI, vol. 12(7), pages 1-11, April.
- Craig Ellis & Patrick J. Wilson & Ralf Zurbruegg, 2007. "Real Estate ‘Value’ Stocks and International Diversification," Journal of Property Research, Taylor & Francis Journals, vol. 24(3), pages 265-287, September.
- Huck, Nicolas, 2009. "Pairs selection and outranking: An application to the S&P 100 index," European Journal of Operational Research, Elsevier, vol. 196(2), pages 819-825, July.
- Bernardo Bertoldi & Chiara Giachino & Alberto Pastore, 2016. "Strategic pricing management in the omnichannel era," MERCATI & COMPETITIVIT?, FrancoAngeli Editore, vol. 2016(4), pages 131-152.
- NJ Matsoma & IM Ambe, 2016. "Factors Affecting Demand Planning in the South African Clothing Industry," Journal of Economics and Behavioral Studies, AMH International, vol. 8(5), pages 194-210.
- Hajirahimi, Zahra & Khashei, Mehdi & Etemadi, Sepideh, 2022. "A novel class of reliability-based parallel hybridization (RPH) models for time series forecasting," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
- Fildes, Robert & Ma, Shaohui & Kolassa, Stephan, 2022. "Retail forecasting: Research and practice," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1283-1318.
- Thais de Castro Moraes & Xue‐Ming Yuan & Ek Peng Chew, 2024. "Hybrid convolutional long short‐term memory models for sales forecasting in retail," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(5), pages 1278-1293, August.
- Shuyun Ren & Hau-Ling Chan & Tana Siqin, 2020. "Demand forecasting in retail operations for fashionable products: methods, practices, and real case study," Annals of Operations Research, Springer, vol. 291(1), pages 761-777, August.
- Fildes, Robert & Ma, Shaohui & Kolassa, Stephan, 2019. "Retail forecasting: research and practice," MPRA Paper 89356, University Library of Munich, Germany.
- Elsy Gómez-Ramos & Francisco Venegas-Martínez, 2013. "A Review of Artificial Neural Networks: How Well Do They Perform in Forecasting Time Series?," Analítika, Analítika - Revista de Análisis Estadístico/Journal of Statistical Analysis, vol. 6(2), pages 7-15, Diciembre.
- Ortíz Arango Francisco & Cabrera Llanos Agustín Ignacio & López Herrera Francisco, 2013. "Pronóstico de los índices accionarios DAX y S&P 500 con redes neuronales diferenciales," Contaduría y Administración, Accounting and Management, vol. 58(3), pages 203-225, julio-sep.
- Wei Huang & Kin Keung Lai & Yoshiteru Nakamori & Shouyang Wang & Lean Yu, 2007. "Neural Networks In Finance And Economics Forecasting," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 6(01), pages 113-140.
- Emmanuel Sirimal Silva & Hossein Hassani & Dag Øivind Madsen & Liz Gee, 2019. "Googling Fashion: Forecasting Fashion Consumer Behaviour Using Google Trends," Social Sciences, MDPI, vol. 8(4), pages 1-23, April.
- Jiří Trešl, 2011. "Srovnání vybraných metod predikce změn trendu indexu PX [Selected Methods of the Prediction of PX Index Trend Reversal]," Politická ekonomie, Prague University of Economics and Business, vol. 2011(2), pages 184-204.
More about this item
Keywords
level of default; financial institutions; neural networks; Extreme Learning Machine; nivel de morosidad; instituciones financieras; redes neuronales; Extreme Learning Machine;All these keywords.
JEL classification:
- G21 - Financial Economics - - Financial Institutions and Services - - - Banks; Other Depository Institutions; Micro Finance Institutions; Mortgages
- G01 - Financial Economics - - General - - - Financial Crises
- C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pab:rmcpee:v:13:y:2012:i:1:p:3-23. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Publicación Digital - UPO (email available below). General contact details of provider: https://edirc.repec.org/data/dmupoes.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.