Extreme Learning Machine to Analyze the Level of Default in Spanish Deposit Institutions || Análisis de la morosidad de las entidades financieras españolas mediante Extreme Learning Machine
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- McNelis, Paul D., 2004. "Neural Networks in Finance," Elsevier Monographs, Elsevier, edition 1, number 9780124859678.
- Wong, W.K. & Guo, Z.X., 2010. "A hybrid intelligent model for medium-term sales forecasting in fashion retail supply chains using extreme learning machine and harmony search algorithm," International Journal of Production Economics, Elsevier, vol. 128(2), pages 614-624, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Daniela Pencheva, 2020. "Use of Factors Related to the Consumption of Fast Moving Consumer Goods in Business Intelligence System for Managing Orders to Suppliers in Retail Chain," Izvestia Journal of the Union of Scientists - Varna. Economic Sciences Series, Union of Scientists - Varna, Economic Sciences Section, vol. 9(2), pages 124-135, August.
- Lalou Panagiota & Ponis Stavros T. & Efthymiou Orestis K., 2020. "Demand Forecasting of Retail Sales Using Data Analytics and Statistical Programming," Management & Marketing, Sciendo, vol. 15(2), pages 186-202, June.
- Cabrera Llanos Agustín Ignacio & Ortíz Arango Francisco, 2012. "Pronóstico del rendimiento del IPC (Índice de Precios y Cotizaciones)mediante el uso de redes neuronales diferenciales," Contaduría y Administración, Accounting and Management, vol. 57(2), pages 63-81, abril-jun.
- Md. Iftekharul Alam Efat & Petr Hajek & Mohammad Zoynul Abedin & Rahat Uddin Azad & Md. Al Jaber & Shuvra Aditya & Mohammad Kabir Hassan, 2024. "Deep-learning model using hybrid adaptive trend estimated series for modelling and forecasting sales," Annals of Operations Research, Springer, vol. 339(1), pages 297-328, August.
- Theodoros Anagnostopoulos & Grigorios L. Kyriakopoulos & Stamatios Ntanos & Eleni Gkika & Sofia Asonitou, 2020. "Intelligent Predictive Analytics for Sustainable Business Investment in Renewable Energy Sources," Sustainability, MDPI, vol. 12(7), pages 1-11, April.
- Huck, Nicolas, 2009. "Pairs selection and outranking: An application to the S&P 100 index," European Journal of Operational Research, Elsevier, vol. 196(2), pages 819-825, July.
- NJ Matsoma & IM Ambe, 2016. "Factors Affecting Demand Planning in the South African Clothing Industry," Journal of Economics and Behavioral Studies, AMH International, vol. 8(5), pages 194-210.
- Shuyun Ren & Hau-Ling Chan & Tana Siqin, 2020. "Demand forecasting in retail operations for fashionable products: methods, practices, and real case study," Annals of Operations Research, Springer, vol. 291(1), pages 761-777, August.
- Fildes, Robert & Ma, Shaohui & Kolassa, Stephan, 2019. "Retail forecasting: research and practice," MPRA Paper 89356, University Library of Munich, Germany.
- Elsy Gómez-Ramos & Francisco Venegas-Martínez, 2013. "A Review of Artificial Neural Networks: How Well Do They Perform in Forecasting Time Series?," Analítika, Analítika - Revista de Análisis Estadístico/Journal of Statistical Analysis, vol. 6(2), pages 7-15, Diciembre.
- Emmanuel Sirimal Silva & Hossein Hassani & Dag Øivind Madsen & Liz Gee, 2019. "Googling Fashion: Forecasting Fashion Consumer Behaviour Using Google Trends," Social Sciences, MDPI, vol. 8(4), pages 1-23, April.
- Anderson, Richard G. & Binner, Jane M. & Schmidt, Vincent A., 2012.
"Connectionist-based rules describing the pass-through of individual goods prices into trend inflation in the United States,"
Economics Letters, Elsevier, vol. 117(1), pages 174-177.
- Richard G. Anderson & Jane M. Binner & Vincent A. Schmidt, 2011. "Connectionist-based rules describing the pass-through of individual goods prices into trend inflation in the United States," Working Papers 2011-007, Federal Reserve Bank of St. Louis.
- Manel Hamdi & Chaker Aloui & Santosh kumar Nanda, 2016. "Comparing Functional Link Artificial Neural Network And Multilayer Feedforward Neural Network Model To Forecast Crude Oil Prices," Economics Bulletin, AccessEcon, vol. 36(4), pages 2430-2442.
- Mark T. Leung & An‐Sing Chen & Ruben Mancha, 2009. "Making trading decisions for financial‐engineered derivatives: a novel ensemble of neural networks using information content," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 16(4), pages 257-277, October.
- Ma, Shaohui & Fildes, Robert, 2020. "Forecasting third-party mobile payments with implications for customer flow prediction," International Journal of Forecasting, Elsevier, vol. 36(3), pages 739-760.
- Majd Kharfan & Vicky Wing Kei Chan & Tugba Firdolas Efendigil, 2021. "A data-driven forecasting approach for newly launched seasonal products by leveraging machine-learning approaches," Annals of Operations Research, Springer, vol. 303(1), pages 159-174, August.
- Puchalsky, Weslly & Ribeiro, Gabriel Trierweiler & da Veiga, Claudimar Pereira & Freire, Roberto Zanetti & Santos Coelho, Leandro dos, 2018. "Agribusiness time series forecasting using Wavelet neural networks and metaheuristic optimization: An analysis of the soybean sack price and perishable products demand," International Journal of Production Economics, Elsevier, vol. 203(C), pages 174-189.
- Ma, Shaohui & Fildes, Robert, 2021. "Retail sales forecasting with meta-learning," European Journal of Operational Research, Elsevier, vol. 288(1), pages 111-128.
- Burka, David & Puppe, Clemens & Szepesvary, Laszlo & Tasnadi, Attila, 2016.
"Neural networks would 'vote' according to Borda's rule,"
Working Paper Series in Economics
96, Karlsruhe Institute of Technology (KIT), Department of Economics and Management.
- Burka, Dávid & Puppe, Clemens & Szepesváry, László & Tasnádi, Attila, 2016. "Neural networks would 'vote' according to Borda's Rule," Corvinus Economics Working Papers (CEWP) 2016/13, Corvinus University of Budapest.
- Chandadevi Giri & Yan Chen, 2022. "Deep Learning for Demand Forecasting in the Fashion and Apparel Retail Industry," Forecasting, MDPI, vol. 4(2), pages 1-17, June.
More about this item
Keywords
level of default; financial institutions; neural networks; Extreme Learning Machine; nivel de morosidad; instituciones financieras; redes neuronales; Extreme Learning Machine;All these keywords.
JEL classification:
- G21 - Financial Economics - - Financial Institutions and Services - - - Banks; Other Depository Institutions; Micro Finance Institutions; Mortgages
- G01 - Financial Economics - - General - - - Financial Crises
- C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pab:rmcpee:v:13:y:2012:i:1:p:3-23. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Publicación Digital - UPO (email available below). General contact details of provider: https://edirc.repec.org/data/dmupoes.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.