IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v47y2012i1p411-420.html
   My bibliography  Save this article

Combustion characteristics and optimal factors determination with Taguchi method for diesel engines port-injecting hydrogen

Author

Listed:
  • Wu, Horng-Wen
  • Wu, Zhan-Yi

Abstract

This study applies the L9 orthogonal array of the Taguchi method to find out the best hydrogen injection timing, hydrogen-energy-share ratio, and the percentage of exhaust gas circulation (EGR) in a single DI diesel engine. The injection timing is controlled by an electronic control unit (ECU) and the quantity of hydrogen is controlled by hydrogen flow controller. For various engine loads, the authors determine the optimal operating factors for low BSFC (brake specific fuel consumption), NOX, and smoke. Moreover, net heat-release rate involving variable specific heat ratio is computed from the experimental in-cylinder pressure. In-cylinder pressure, net heat-release rate, A/F ratios, COV (coefficient of variations) of IMEP (indicated mean effective pressure), NOX, and smoke using the optimum condition factors are compared with those by original baseline diesel engine. The predictions made using Taguchi's parameter design technique agreed with the confirmation results on 95% confidence interval. At 45% and 60% loads the optimum factor combination compared with the original baseline diesel engine reduces 14.52% for BSFC, 60.5% for NOX and for 42.28% smoke and improves combustion performance such as peak in-cylinder pressure and net heat-release rate. Adding hydrogen and EGR would not generate unstable combustion due to lower COV of IMEP.

Suggested Citation

  • Wu, Horng-Wen & Wu, Zhan-Yi, 2012. "Combustion characteristics and optimal factors determination with Taguchi method for diesel engines port-injecting hydrogen," Energy, Elsevier, vol. 47(1), pages 411-420.
  • Handle: RePEc:eee:energy:v:47:y:2012:i:1:p:411-420
    DOI: 10.1016/j.energy.2012.09.027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544212007050
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2012.09.027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Saravanan, N. & Nagarajan, G., 2010. "Performance and emission studies on port injection of hydrogen with varied flow rates with Diesel as an ignition source," Applied Energy, Elsevier, vol. 87(7), pages 2218-2229, July.
    2. Wang, Shuofeng & Ji, Changwei & Zhang, Jian & Zhang, Bo, 2011. "Comparison of the performance of a spark-ignited gasoline engine blended with hydrogen and hydrogen–oxygen mixtures," Energy, Elsevier, vol. 36(10), pages 5832-5837.
    3. Lu, S.-M. & Li, Y.-C.M. & Tang, J.-C., 2003. "Optimum design of natural-circulation solar-water-heater by the Taguchi method," Energy, Elsevier, vol. 28(7), pages 741-750.
    4. Wu, Horng-Wen & Ku, Hui-Wen, 2011. "The optimal parameters estimation for rectangular cylinders installed transversely in the flow channel of PEMFC from a three-dimensional PEMFC model and the Taguchi method," Applied Energy, Elsevier, vol. 88(12), pages 4879-4890.
    5. Adnan, R. & Masjuki, H.H. & Mahlia, T.M.I., 2012. "Performance and emission analysis of hydrogen fueled compression ignition engine with variable water injection timing," Energy, Elsevier, vol. 43(1), pages 416-426.
    6. Yüksel, F. & Ceviz, M.A., 2003. "Thermal balance of a four stroke SI engine operating on hydrogen as a supplementary fuel," Energy, Elsevier, vol. 28(11), pages 1069-1080.
    7. Ganapathy, T. & Murugesan, K. & Gakkhar, R.P., 2009. "Performance optimization of Jatropha biodiesel engine model using Taguchi approach," Applied Energy, Elsevier, vol. 86(11), pages 2476-2486, November.
    8. Soid, S.N. & Zainal, Z.A., 2011. "Spray and combustion characterization for internal combustion engines using optical measuring techniques – A review," Energy, Elsevier, vol. 36(2), pages 724-741.
    9. Rakopoulos, C.D. & Scott, M.A. & Kyritsis, D.C. & Giakoumis, E.G., 2008. "Availability analysis of hydrogen/natural gas blends combustion in internal combustion engines," Energy, Elsevier, vol. 33(2), pages 248-255.
    10. Hari Ganesh, R. & Subramanian, V. & Balasubramanian, V. & Mallikarjuna, J.M. & Ramesh, A. & Sharma, R.P., 2008. "Hydrogen fueled spark ignition engine with electronically controlled manifold injection: An experimental study," Renewable Energy, Elsevier, vol. 33(6), pages 1324-1333.
    11. Bysveen, Marie, 2007. "Engine characteristics of emissions and performance using mixtures of natural gas and hydrogen," Energy, Elsevier, vol. 32(4), pages 482-489.
    12. Mills, Randell L. & Zhao, Guibing & Good, William, 2011. "Continuous hydrino thermal power system," Applied Energy, Elsevier, vol. 88(3), pages 789-798, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Shuofeng & Ji, Changwei & Zhang, Bo & Cong, Xiaoyu & Liu, Xiaolong, 2016. "Effect of CO2 dilution on combustion and emissions characteristics of the hydrogen-enriched gasoline engine," Energy, Elsevier, vol. 96(C), pages 118-126.
    2. Besseris, George J., 2014. "Using qualimetric engineering and extremal analysis to optimize a proton exchange membrane fuel cell stack," Applied Energy, Elsevier, vol. 128(C), pages 15-26.
    3. Zhou, J.H. & Cheung, C.S. & Zhao, W.Z. & Leung, C.W., 2016. "Diesel–hydrogen dual-fuel combustion and its impact on unregulated gaseous emissions and particulate emissions under different engine loads and engine speeds," Energy, Elsevier, vol. 94(C), pages 110-123.
    4. Zhang, Bo & Ji, Changwei & Wang, Shuofeng & Liu, Xiaolong, 2014. "Combustion and emissions characteristics of a spark-ignition engine fueled with hydrogen–methanol blends under lean and various loads conditions," Energy, Elsevier, vol. 74(C), pages 829-835.
    5. Chintala, V. & Subramanian, K.A., 2015. "Experimental investigations on effect of different compression ratios on enhancement of maximum hydrogen energy share in a compression ignition engine under dual-fuel mode," Energy, Elsevier, vol. 87(C), pages 448-462.
    6. Chintala, Venkateswarlu & Subramanian, K.A., 2017. "A comprehensive review on utilization of hydrogen in a compression ignition engine under dual fuel mode," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 472-491.
    7. Feng, Hongqing & Zheng, Zunqing & Yao, Mingfa & Cheng, Gang & Wang, Meiying & Wang, Xin, 2013. "Effects of exhaust gas recirculation on low temperature combustion using wide distillation range diesel," Energy, Elsevier, vol. 51(C), pages 291-296.
    8. Ayhan, Vezir & Çangal, Çiçek & Cesur, İdris & Safa, Aykut, 2020. "Combined influence of supercharging, EGR, biodiesel and ethanol on emissions of a diesel engine: Proposal of an optimization strategy," Energy, Elsevier, vol. 207(C).
    9. Bose, Probir Kumar & Deb, Madhujit & Banerjee, Rahul & Majumder, Arindam, 2013. "Multi objective optimization of performance parameters of a single cylinder diesel engine running with hydrogen using a Taguchi-fuzzy based approach," Energy, Elsevier, vol. 63(C), pages 375-386.
    10. Ouyang, Kwan & Wu, Horng-Wen & Huang, Shun-Chieh & Wu, Sheng-Ju, 2017. "Optimum parameter design for performance of methanol steam reformer combining Taguchi method with artificial neural network and genetic algorithm," Energy, Elsevier, vol. 138(C), pages 446-458.
    11. Bo Zhang & Huaiyu Wang & Shuofeng Wang, 2023. "Computational Investigation of Combustion, Performance, and Emissions of a Diesel-Hydrogen Dual-Fuel Engine," Sustainability, MDPI, vol. 15(4), pages 1-15, February.
    12. Wu, Horng-Wen & Fan, Chen-Ming & He, Jian-Yi & Hsu, Tzu-Ting, 2017. "Optimal factors estimation for diesel/methanol engines changing methanol injection timing and inlet air temperature," Energy, Elsevier, vol. 141(C), pages 1819-1828.
    13. Saravanan, S. & Kaliyanasunder, R. & Rajesh Kumar, B. & Lakshmi Narayana Rao, G., 2020. "Effect of design parameters on performance and emissions of a CI engine operated with diesel-biodiesel- higher alcohol blends," Renewable Energy, Elsevier, vol. 148(C), pages 425-436.
    14. Yilmaz, I.T. & Gumus, M., 2018. "Effects of hydrogen addition to the intake air on performance and emissions of common rail diesel engine," Energy, Elsevier, vol. 142(C), pages 1104-1113.
    15. Wu, Horng-Wen & Wang, Ren-Hung & Chen, Ying-Chuan & Ou, Dung-Je & Chen, Teng-Yu, 2014. "Influence of port-inducted ethanol or gasoline on combustion and emission of a closed cycle diesel engine," Energy, Elsevier, vol. 64(C), pages 259-267.
    16. Ankit Sonthalia & Naveen Kumar, 2023. "Performance Improvement and Emission Reduction Potential of Blends of Hydrotreated Used Cooking Oil, Biodiesel and Diesel in a Compression Ignition Engine," Energies, MDPI, vol. 16(21), pages 1-23, November.
    17. Li, Jing & Yang, Wen Ming & Goh, Thong Ngee & An, Hui & Maghbouli, Amin, 2014. "Study on RCCI (reactivity controlled compression ignition) engine by means of statistical experimental design," Energy, Elsevier, vol. 78(C), pages 777-787.
    18. Li, Yueh-Heng & Lin, Hsien-Tsung & Xiao, Kai-Lin & Lasek, Janusz, 2018. "Combustion behavior of coal pellets blended with Miscanthus biochar," Energy, Elsevier, vol. 163(C), pages 180-190.
    19. Gonca, Guven & Sahin, Bahri & Ust, Yasin, 2013. "Performance maps for an air-standard irreversible Dual–Miller cycle (DMC) with late inlet valve closing (LIVC) version," Energy, Elsevier, vol. 54(C), pages 285-290.
    20. Liao, Chunhui & Ertesvåg, Ivar S. & Zhao, Jianing, 2013. "Energetic and exergetic efficiencies of coal-fired CHP (combined heat and power) plants used in district heating systems of China," Energy, Elsevier, vol. 57(C), pages 671-681.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bose, Probir Kumar & Deb, Madhujit & Banerjee, Rahul & Majumder, Arindam, 2013. "Multi objective optimization of performance parameters of a single cylinder diesel engine running with hydrogen using a Taguchi-fuzzy based approach," Energy, Elsevier, vol. 63(C), pages 375-386.
    2. Wu, Horng-Wen & Wu, Zhan-Yi, 2013. "Using Taguchi method on combustion performance of a diesel engine with diesel/biodiesel blend and port-inducting H2," Applied Energy, Elsevier, vol. 104(C), pages 362-370.
    3. Wang, Shuofeng & Ji, Changwei & Zhang, Jian & Zhang, Bo, 2011. "Comparison of the performance of a spark-ignited gasoline engine blended with hydrogen and hydrogen–oxygen mixtures," Energy, Elsevier, vol. 36(10), pages 5832-5837.
    4. Wang, Shuofeng & Ji, Changwei & Zhang, Bo, 2010. "Effects of hydrogen addition and cylinder cutoff on combustion and emissions performance of a spark-ignited gasoline engine under a low operating condition," Energy, Elsevier, vol. 35(12), pages 4754-4760.
    5. Chintala, V. & Subramanian, K.A., 2015. "Experimental investigations on effect of different compression ratios on enhancement of maximum hydrogen energy share in a compression ignition engine under dual-fuel mode," Energy, Elsevier, vol. 87(C), pages 448-462.
    6. Chintala, V. & Subramanian, K.A., 2017. "Experimental investigation of autoignition of hydrogen-air charge in a compression ignition engine under dual-fuel mode," Energy, Elsevier, vol. 138(C), pages 197-209.
    7. Ji, Changwei & Wang, Shuofeng & Zhang, Bo, 2012. "Performance of a hybrid hydrogen–gasoline engine under various operating conditions," Applied Energy, Elsevier, vol. 97(C), pages 584-589.
    8. Chintala, V. & Subramanian, K.A., 2015. "An effort to enhance hydrogen energy share in a compression ignition engine under dual-fuel mode using low temperature combustion strategies," Applied Energy, Elsevier, vol. 146(C), pages 174-183.
    9. Deb, Madhujit & Debbarma, Bishop & Majumder, Arindam & Banerjee, Rahul, 2016. "Performance –emission optimization of a diesel-hydrogen dual fuel operation: A NSGA II coupled TOPSIS MADM approach," Energy, Elsevier, vol. 117(P1), pages 281-290.
    10. Chintala, Venkateswarlu & Subramanian, K.A., 2017. "A comprehensive review on utilization of hydrogen in a compression ignition engine under dual fuel mode," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 472-491.
    11. Park, Cheolwoong & Kim, Changgi & Choi, Young & Lee, Janghee, 2013. "Operating strategy for exhaust gas reduction and performance improvement in a heavy-duty hydrogen-natural gas blend engine," Energy, Elsevier, vol. 50(C), pages 262-269.
    12. Rahman, M.A. & Aziz, Mohammad Abdul, 2021. "Biodiesel from water hyacinth biomass and its influence on CI engine performance, emission, combustion and heat loss characteristics with the induction of hydroxy," Energy, Elsevier, vol. 224(C).
    13. Chintala, Venkateswarlu & Subramanian, K.A., 2013. "A CFD (computational fluid dynamics) study for optimization of gas injector orientation for performance improvement of a dual-fuel diesel engine," Energy, Elsevier, vol. 57(C), pages 709-721.
    14. Wang, Xin & Zhang, Hongguang & Yao, Baofeng & Lei, Yan & Sun, Xiaona & Wang, Daojing & Ge, Yunshan, 2012. "Experimental study on factors affecting lean combustion limit of S.I engine fueled with compressed natural gas and hydrogen blends," Energy, Elsevier, vol. 38(1), pages 58-65.
    15. Vudumu, Shravan K. & Koylu, Umit O., 2011. "Computational modeling, validation, and utilization for predicting the performance, combustion and emission characteristics of hydrogen IC engines," Energy, Elsevier, vol. 36(1), pages 647-655.
    16. Das, Amar Kumar & Hansdah, Dulari & Panda, Achyut Kumar, 2021. "Thermal balancing and exergetic performance evaluation of a compression ignition engine fuelled with waste plastic pyrolytic oil and different fuel additives," Energy, Elsevier, vol. 229(C).
    17. M. Faizal & L. S. Chuah & C. Lee & A. Hameed & J. Lee & M. Shankar, 2019. "Review Of Hydrogen Fuel For Internal Combustion Engines," Journal of Mechanical Engineering Research & Developments (JMERD), Zibeline International Publishing, vol. 42(3), pages 35-46, April.
    18. Chen, Guan-Bang & Li, Yueh-Heng & Cheng, Tsarng-Sheng & Chao, Yei-Chin, 2013. "Chemical effect of hydrogen peroxide addition on characteristics of methane–air combustion," Energy, Elsevier, vol. 55(C), pages 564-570.
    19. Talebian-Kiakalaieh, Amin & Amin, Nor Aishah Saidina & Mazaheri, Hossein, 2013. "A review on novel processes of biodiesel production from waste cooking oil," Applied Energy, Elsevier, vol. 104(C), pages 683-710.
    20. Dwivedi, Gaurav & Jain, Siddharth & Sharma, M.P., 2011. "Impact analysis of biodiesel on engine performance—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4633-4641.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:47:y:2012:i:1:p:411-420. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.