IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v51y2013icp291-296.html
   My bibliography  Save this article

Effects of exhaust gas recirculation on low temperature combustion using wide distillation range diesel

Author

Listed:
  • Feng, Hongqing
  • Zheng, Zunqing
  • Yao, Mingfa
  • Cheng, Gang
  • Wang, Meiying
  • Wang, Xin

Abstract

The experiments were performed using a modified six-cylinder turbocharged direct injection diesel engine with diesel of different distillation ranges to investigate the effects of (exhaust gas recirculation) EGR on engine performance and emission characteristics of low-temperature combustion engine. The results showed that for the same fuel, with the increase of the EGR rate, the cylinder pressure remained almost unchanged. Increasing the EGR rate slowed the combustion, the peak value of heat release rate increased and the indicated thermal efficiency decreased. The peak value of heat release rate increased with the decline of the initial boiling point at the same EGR rate. The ignition delay of combustion increased with the decrease of initial boiling point. When EGR rate was low, the level of HC and CO emission was low, while the HC and CO emission increased rapidly with the increase of EGR. The NOx emission was reduced with the increase of the EGR rate. The study also showed that the wide distillation range diesel can reduce emission over diesel in low temperature combustion. Wide distillation range fuel had potential to reduce soot emission at different EGR for low temperature combustion engine.

Suggested Citation

  • Feng, Hongqing & Zheng, Zunqing & Yao, Mingfa & Cheng, Gang & Wang, Meiying & Wang, Xin, 2013. "Effects of exhaust gas recirculation on low temperature combustion using wide distillation range diesel," Energy, Elsevier, vol. 51(C), pages 291-296.
  • Handle: RePEc:eee:energy:v:51:y:2013:i:c:p:291-296
    DOI: 10.1016/j.energy.2012.12.023
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544212009504
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2012.12.023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Maiboom, Alain & Tauzia, Xavier & Hétet, Jean-François, 2008. "Experimental study of various effects of exhaust gas recirculation (EGR) on combustion and emissions of an automotive direct injection diesel engine," Energy, Elsevier, vol. 33(1), pages 22-34.
    2. Hountalas, D.T. & Mavropoulos, G.C. & Binder, K.B., 2008. "Effect of exhaust gas recirculation (EGR) temperature for various EGR rates on heavy duty DI diesel engine performance and emissions," Energy, Elsevier, vol. 33(2), pages 272-283.
    3. Ishida, Masahiro & Yamamoto, Shohei & Ueki, Hironobu & Sakaguchi, Daisaku, 2010. "Remarkable improvement of NOx–PM trade-off in a diesel engine by means of bioethanol and EGR," Energy, Elsevier, vol. 35(12), pages 4572-4581.
    4. Zhang, Quanchang & Yao, Mingfa & Zheng, Zunqing & Liu, Haifeng & Xu, Jia, 2012. "Experimental study of n-butanol addition on performance and emissions with diesel low temperature combustion," Energy, Elsevier, vol. 47(1), pages 515-521.
    5. Bermúdez, Vicente & Lujan, José M. & Pla, Benjamín & Linares, Waldemar G., 2011. "Effects of low pressure exhaust gas recirculation on regulated and unregulated gaseous emissions during NEDC in a light-duty diesel engine," Energy, Elsevier, vol. 36(9), pages 5655-5665.
    6. Wu, Horng-Wen & Wu, Zhan-Yi, 2012. "Combustion characteristics and optimal factors determination with Taguchi method for diesel engines port-injecting hydrogen," Energy, Elsevier, vol. 47(1), pages 411-420.
    7. Torregrosa, A.J. & Broatch, A. & Novella, R. & Mónico, L.F., 2011. "Suitability analysis of advanced diesel combustion concepts for emissions and noise control," Energy, Elsevier, vol. 36(2), pages 825-838.
    8. Shi, Lei & Cui, Yi & Deng, Kangyao & Peng, Haiyong & Chen, Yuanyuan, 2006. "Study of low emission homogeneous charge compression ignition (HCCI) engine using combined internal and external exhaust gas recirculation (EGR)," Energy, Elsevier, vol. 31(14), pages 2665-2676.
    9. Zheng, Junnian & Caton, Jerald A., 2012. "Second law analysis of a low temperature combustion diesel engine: Effect of injection timing and exhaust gas recirculation," Energy, Elsevier, vol. 38(1), pages 78-84.
    10. Peng, Haiyong & Cui, Yi & Shi, Lei & Deng, Kangyao, 2008. "Effects of exhaust gas recirculation (EGR) on combustion and emissions during cold start of direct injection (DI) diesel engine," Energy, Elsevier, vol. 33(3), pages 471-479.
    11. Choi, Seungmok & Park, Wonah & Lee, Sangyul & Min, Kyoungdoug & Choi, Hoimyung, 2011. "Methods for in-cylinder EGR stratification and its effects on combustion and emission characteristics in a diesel engine," Energy, Elsevier, vol. 36(12), pages 6948-6959.
    12. Torres García, Miguel & José Jiménez-Espadafor Aguilar, Francisco & Sánchez Lencero, Tomás, 2009. "Experimental study of the performances of a modified diesel engine operating in homogeneous charge compression ignition (HCCI) combustion mode versus the original diesel combustion mode," Energy, Elsevier, vol. 34(2), pages 159-171.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lu, Xingcai & Qian, Yong & Yang, Zheng & Han, Dong & Ji, Jibin & Zhou, Xiaoxin & Huang, Zhen, 2014. "Experimental study on compound HCCI (homogenous charge compression ignition) combustion fueled with gasoline and diesel blends," Energy, Elsevier, vol. 64(C), pages 707-718.
    2. Huang, Haozhong & Zhou, Chengzhong & Liu, Qingsheng & Wang, Qingxin & Wang, Xueqiang, 2016. "An experimental study on the combustion and emission characteristics of a diesel engine under low temperature combustion of diesel/gasoline/n-butanol blends," Applied Energy, Elsevier, vol. 170(C), pages 219-231.
    3. Han, Dong & Wang, Chunhai & Duan, Yaozong & Tian, Zhisong & Huang, Zhen, 2014. "An experimental study of injection and spray characteristics of diesel and gasoline blends on a common rail injection system," Energy, Elsevier, vol. 75(C), pages 513-519.
    4. Jaliliantabar, Farzad & Ghobadian, Barat & Carlucci, Antonio Paolo & Najafi, Gholamhassan & Mamat, Rizalman & Ficarella, Antonio & Strafella, Luciano & Santino, Angelo & De Domenico, Stefania, 2020. "A comprehensive study on the effect of pilot injection, EGR rate, IMEP and biodiesel characteristics on a CRDI diesel engine," Energy, Elsevier, vol. 194(C).
    5. Jaliliantabar, Farzad & Ghobadian, Barat & Najafi, Gholamhassan & Mamat, Rizalman & Carlucci, Antonio Paolo, 2019. "Multi-objective NSGA-II optimization of a compression ignition engine parameters using biodiesel fuel and exhaust gas recirculation," Energy, Elsevier, vol. 187(C).
    6. Huang, Haozhong & Wang, Qingxin & Shi, Cheng & Liu, Qingsheng & Zhou, Chengzhong, 2016. "Comparative study of effects of pilot injection and fuel properties on low temperature combustion in diesel engine under a medium EGR rate," Applied Energy, Elsevier, vol. 179(C), pages 1194-1208.
    7. Shin, Yoon Hyuk & Kim, Sung Chul & Kim, Min Soo, 2013. "Use of electromagnetic clutch water pumps in vehicle engine cooling systems to reduce fuel consumption," Energy, Elsevier, vol. 57(C), pages 624-631.
    8. Cui, Yi & Peng, Haiyong & Deng, Kangyao & Shi, Lei, 2014. "The effects of unburned hydrocarbon recirculation on ignition and combustion during diesel engine cold starts," Energy, Elsevier, vol. 64(C), pages 323-329.
    9. Pachiannan, Tamilselvan & Zhong, Wenjun & Rajkumar, Sundararajan & He, Zhixia & Leng, Xianying & Wang, Qian, 2019. "A literature review of fuel effects on performance and emission characteristics of low-temperature combustion strategies," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    10. Yoon, Wonjun & Kim, Jonghyun & Chung, Chungsoo & Park, Jungsoo, 2022. "Numerical study on prediction of icing phenomena in intake system of diesel engine: Operating conditions with low-to-middle velocity of inlet air," Energy, Elsevier, vol. 248(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Benajes, Jesús & Molina, Santiago & Novella, Ricardo & Belarte, Eduardo, 2014. "Evaluation of massive exhaust gas recirculation and Miller cycle strategies for mixing-controlled low temperature combustion in a heavy duty diesel engine," Energy, Elsevier, vol. 71(C), pages 355-366.
    2. Tira, H.S. & Herreros, J.M. & Tsolakis, A. & Wyszynski, M.L., 2012. "Characteristics of LPG-diesel dual fuelled engine operated with rapeseed methyl ester and gas-to-liquid diesel fuels," Energy, Elsevier, vol. 47(1), pages 620-629.
    3. Jia, Ming & Li, Yaopeng & Xie, Maozhao & Wang, Tianyou, 2013. "Numerical evaluation of the potential of late intake valve closing strategy for diesel PCCI (premixed charge compression ignition) engine in a wide speed and load range," Energy, Elsevier, vol. 51(C), pages 203-215.
    4. Hoseini, S.S. & Najafi, G. & Ghobadian, B. & Mamat, Rizalman & Sidik, Nor Azwadi Che & Azmi, W.H., 2017. "The effect of combustion management on diesel engine emissions fueled with biodiesel-diesel blends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 307-331.
    5. Pachiannan, Tamilselvan & Zhong, Wenjun & Rajkumar, Sundararajan & He, Zhixia & Leng, Xianying & Wang, Qian, 2019. "A literature review of fuel effects on performance and emission characteristics of low-temperature combustion strategies," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    6. Tsuneyoshi, Koji & Yamamoto, Kazuhiro, 2013. "Experimental study of hexagonal and square diesel particulate filters under controlled and uncontrolled catalyzed regeneration," Energy, Elsevier, vol. 60(C), pages 325-332.
    7. Rajasekar, E. & Murugesan, A. & Subramanian, R. & Nedunchezhian, N., 2010. "Review of NOx reduction technologies in CI engines fuelled with oxygenated biomass fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 2113-2121, September.
    8. Ganesh, D. & Nagarajan, G., 2010. "Homogeneous charge compression ignition (HCCI) combustion of diesel fuel with external mixture formation," Energy, Elsevier, vol. 35(1), pages 148-157.
    9. Mwangi, John Kennedy & Lee, Wen-Jhy & Chang, Yu-Cheng & Chen, Chia-Yang & Wang, Lin-Chi, 2015. "An overview: Energy saving and pollution reduction by using green fuel blends in diesel engines," Applied Energy, Elsevier, vol. 159(C), pages 214-236.
    10. Thangaraja, J. & Kannan, C., 2016. "Effect of exhaust gas recirculation on advanced diesel combustion and alternate fuels - A review," Applied Energy, Elsevier, vol. 180(C), pages 169-184.
    11. Rakopoulos, Dimitrios C. & Rakopoulos, Constantine D. & Kosmadakis, George M. & Giakoumis, Evangelos G., 2020. "Exergy assessment of combustion and EGR and load effects in DI diesel engine using comprehensive two-zone modeling," Energy, Elsevier, vol. 202(C).
    12. Ko, Jinyoung & Jin, Dongyoung & Jang, Wonwook & Myung, Cha-Lee & Kwon, Sangil & Park, Simsoo, 2017. "Comparative investigation of NOx emission characteristics from a Euro 6-compliant diesel passenger car over the NEDC and WLTC at various ambient temperatures," Applied Energy, Elsevier, vol. 187(C), pages 652-662.
    13. Shen, Zhaojie & Liu, Zhongchang & Tian, Jing & Liu, Jiangwei, 2014. "Investigation of in-cylinder gas stratification of diesel engine during intake and compression stroke," Energy, Elsevier, vol. 72(C), pages 671-679.
    14. Torregrosa, A.J. & Broatch, A. & Novella, R. & Gomez-Soriano, J. & Mónico, L.F., 2017. "Impact of gasoline and Diesel blends on combustion noise and pollutant emissions in Premixed Charge Compression Ignition engines," Energy, Elsevier, vol. 137(C), pages 58-68.
    15. Xu, Guangfu & Jia, Ming & Li, Yaopeng & Xie, Maozhao & Su, Wanhua, 2017. "Multi-objective optimization of the combustion of a heavy-duty diesel engine with low temperature combustion (LTC) under a wide load range: (II) Detailed parametric, energy, and exergy analysis," Energy, Elsevier, vol. 139(C), pages 247-261.
    16. Lu, Xingcai & Zhou, Xiaoxin & Ji, Libin & Yang, Zheng & Han, Dong & Huang, Chen & Huang, Zhen, 2013. "Experimental studies on the dual-fuel sequential combustion and emission simulation," Energy, Elsevier, vol. 51(C), pages 358-373.
    17. Rakopoulos, Constantine D. & Rakopoulos, Dimitrios C. & Mavropoulos, George C. & Kosmadakis, George M., 2018. "Investigating the EGR rate and temperature impact on diesel engine combustion and emissions under various injection timings and loads by comprehensive two-zone modeling," Energy, Elsevier, vol. 157(C), pages 990-1014.
    18. Tsuneyoshi, Koji & Yamamoto, Kazuhiro, 2012. "A study on the cell structure and the performances of wall-flow diesel particulate filter," Energy, Elsevier, vol. 48(1), pages 492-499.
    19. Luján, José Manuel & Guardiola, Carlos & Pla, Benjamín & Reig, Alberto, 2015. "Switching strategy between HP (high pressure)- and LPEGR (low pressure exhaust gas recirculation) systems for reduced fuel consumption and emissions," Energy, Elsevier, vol. 90(P2), pages 1790-1798.
    20. Shin, Yoon Hyuk & Kim, Sung Chul & Kim, Min Soo, 2013. "Use of electromagnetic clutch water pumps in vehicle engine cooling systems to reduce fuel consumption," Energy, Elsevier, vol. 57(C), pages 624-631.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:51:y:2013:i:c:p:291-296. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.