IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v36y2011i12p6731-6744.html
   My bibliography  Save this article

Experimental–theoretical methodology for determination of inertial pressure drop distribution and pore structure properties in wall-flow diesel particulate filters (DPFs)

Author

Listed:
  • Payri, F.
  • Broatch, A.
  • Serrano, J.R.
  • Piqueras, P.

Abstract

Wall-flow particulate filters have been placed as a standard technology for Diesel engines because of the increasing restrictions to soot emissions. The inclusion of this system within the exhaust line requires the development of computational tools to properly simulate its flow dynamics and acoustics behaviour. These aspects become the key to understand the influence on engine performance and driveability as a function of the filter placement. Since the pressure drop and the filtration process are strongly depending on the pore structure properties – permeability, porosity and pore size – a reliable definition of these characteristics is essential for model development. In this work a methodology is proposed to determine such properties based on the combination of the pressure drop rement in a steady flow test rig and two theoretical approaches. The later are a lumped model and a one-dimensional (1D) unsteady compressible flow model. The purpose is to simplify the integration of particulate filters into the global engine modelling and development processes avoiding the need to resort to specific and expensive characterisation tests. The proposed methodology was validated against measurements of the response of an uncoated diesel particulate filter (DPF) under different flow conditions as cold steady flow, impulsive flow and hot pulsating flow.

Suggested Citation

  • Payri, F. & Broatch, A. & Serrano, J.R. & Piqueras, P., 2011. "Experimental–theoretical methodology for determination of inertial pressure drop distribution and pore structure properties in wall-flow diesel particulate filters (DPFs)," Energy, Elsevier, vol. 36(12), pages 6731-6744.
  • Handle: RePEc:eee:energy:v:36:y:2011:i:12:p:6731-6744
    DOI: 10.1016/j.energy.2011.10.033
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421100692X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2011.10.033?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zervas, Efthimios & Poulopoulos, Stavros & Philippopoulos, Constantinos, 2006. "CO2 emissions change from the introduction of diesel passenger cars: Case of Greece," Energy, Elsevier, vol. 31(14), pages 2915-2925.
    2. Piscaglia, F. & Ferrari, G., 2009. "A novel 1D approach for the simulation of unsteady reacting flows in diesel exhaust after-treatment systems," Energy, Elsevier, vol. 34(12), pages 2051-2062.
    3. Knecht, Walter, 2008. "Diesel engine development in view of reduced emission standards," Energy, Elsevier, vol. 33(2), pages 264-271.
    4. Sarvi, A. & Zevenhoven, R., 2010. "Large-scale diesel engine emission control parameters," Energy, Elsevier, vol. 35(2), pages 1139-1145.
    5. Torregrosa, A.J. & Serrano, J.R. & Arnau, F.J. & Piqueras, P., 2011. "A fluid dynamic model for unsteady compressible flow in wall-flow diesel particulate filters," Energy, Elsevier, vol. 36(1), pages 671-684.
    6. Torregrosa, A.J. & Broatch, A. & Novella, R. & Mónico, L.F., 2011. "Suitability analysis of advanced diesel combustion concepts for emissions and noise control," Energy, Elsevier, vol. 36(2), pages 825-838.
    7. Rakopoulos, Constantine D. & Dimaratos, Athanasios M. & Giakoumis, Evangelos G. & Rakopoulos, Dimitrios C., 2010. "Investigating the emissions during acceleration of a turbocharged diesel engine operating with bio-diesel or n-butanol diesel fuel blends," Energy, Elsevier, vol. 35(12), pages 5173-5184.
    8. Bermúdez, Vicente & Lujan, José M. & Pla, Benjamín & Linares, Waldemar G., 2011. "Effects of low pressure exhaust gas recirculation on regulated and unregulated gaseous emissions during NEDC in a light-duty diesel engine," Energy, Elsevier, vol. 36(9), pages 5655-5665.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhu, Xinning & Zuo, Qingsong & Tang, Yuanyou & Xie, Yong & Shen, Zhuang & Yang, Xiaomei, 2022. "Performance enhancement of equilibrium regeneration in a gasoline particulate filter based on field synergy theory," Energy, Elsevier, vol. 244(PA).
    2. Zhao, Xiaohuan & Jiang, Jiang & Mao, Zhengsong, 2023. "Effect of filter material and porosity on the energy storage capacity characteristics of diesel particulate filter thermoelectric conversion mobile energy storage system," Energy, Elsevier, vol. 283(C).
    3. Xu, Wanrong & Kou, Chuanfu & E, Jiaqiang & Feng, Changling & Tan, Yan, 2024. "Effect analysis on the flow uniformity and pressure drop characteristics of the rotary diesel particulate filter for heavy-duty truck," Energy, Elsevier, vol. 288(C).
    4. García, Antonio & Monsalve-Serrano, Javier & Lago Sari, Rafael & Gaillard, Patrick, 2020. "Assessment of a complete truck operating under dual-mode dual-fuel combustion in real life applications: Performance and emissions analysis," Applied Energy, Elsevier, vol. 279(C).
    5. Serrano, J.R. & Climent, H. & Piqueras, P. & Angiolini, E., 2014. "Analysis of fluid-dynamic guidelines in diesel particulate filter sizing for fuel consumption reduction in post-turbo and pre-turbo placement," Applied Energy, Elsevier, vol. 132(C), pages 507-523.
    6. Luján, José Manuel & Serrano, José Ramón & Piqueras, Pedro & García-Afonso, Óscar, 2015. "Experimental assessment of a pre-turbo aftertreatment configuration in a single stage turbocharged diesel engine. Part 2: Transient operation," Energy, Elsevier, vol. 80(C), pages 614-627.
    7. Zhao, Xiaohuan & Jiang, Jiang & Zuo, Hongyan & Jia, Guohai, 2023. "Soot combustion characteristics of oxygen concentration and regeneration temperature effect on continuous pulsation regeneration in diesel particulate filter for heavy-duty truck," Energy, Elsevier, vol. 264(C).
    8. Macián, V. & Serrano, J.R. & Piqueras, P. & Sanchis, E.J., 2019. "Internal pore diffusion and adsorption impact on the soot oxidation in wall-flow particulate filters," Energy, Elsevier, vol. 179(C), pages 407-421.
    9. Serrano, José Ramón & Arnau, Francisco José & Piqueras, Pedro & García-Afonso, Óscar, 2013. "Packed bed of spherical particles approach for pressure drop prediction in wall-flow DPFs (diesel particulate filters) under soot loading conditions," Energy, Elsevier, vol. 58(C), pages 644-654.
    10. Serrano, José Ramón & Climent, Héctor & Piqueras, Pedro & Angiolini, Emanuele, 2016. "Filtration modelling in wall-flow particulate filters of low soot penetration thickness," Energy, Elsevier, vol. 112(C), pages 883-898.
    11. Qiu, Tao & Li, Ning & Lei, Yan & Sang, Hailang & Ma, Xuejian & Liu, Zedu, 2024. "Research on the method of diesel particulate filters carbon load recognition based on deep learning," Energy, Elsevier, vol. 292(C).
    12. Bermúdez, Vicente & Serrano, José Ramón & Piqueras, Pedro & Campos, Daniel, 2015. "Analysis of the influence of pre-DPF water injection technique on pollutants emission," Energy, Elsevier, vol. 89(C), pages 778-792.
    13. Zhao, Xiaohuan & Jiang, Jiang & Zuo, Hongyan & Mao, Zhengsong, 2023. "Performance analysis of diesel particulate filter thermoelectric conversion mobile energy storage system under engine conditions of low-speed and light-load," Energy, Elsevier, vol. 282(C).
    14. Zhao, Xiaohuan & Zuo, Hongyan & Jia, Guohai, 2022. "Effect analysis on pressure sensitivity performance of diesel particulate filter for heavy-duty truck diesel engine by the nonlinear soot regeneration combustion pressure model," Energy, Elsevier, vol. 257(C).
    15. Tsuneyoshi, Koji & Yamamoto, Kazuhiro, 2012. "A study on the cell structure and the performances of wall-flow diesel particulate filter," Energy, Elsevier, vol. 48(1), pages 492-499.
    16. Galindo, José & Serrano, José Ramón & Piqueras, Pedro & García-Afonso, Óscar, 2012. "Heat transfer modelling in honeycomb wall-flow diesel particulate filters," Energy, Elsevier, vol. 43(1), pages 201-213.
    17. Orihuela, M. Pilar & Chacartegui, Ricardo & Martínez-Fernández, Julián, 2020. "New biomorphic filters to face upcoming particulate emissions policies: A review of the FIL-BIO-DIESEL project," Energy, Elsevier, vol. 201(C).
    18. Torregrosa, Antonio José & Serrano, José Ramón & Piqueras, Pedro & García-Afonso, Óscar, 2017. "Experimental and computational approach to the transient behaviour of wall-flow diesel particulate filters," Energy, Elsevier, vol. 119(C), pages 887-900.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tsuneyoshi, Koji & Yamamoto, Kazuhiro, 2012. "A study on the cell structure and the performances of wall-flow diesel particulate filter," Energy, Elsevier, vol. 48(1), pages 492-499.
    2. Tsuneyoshi, Koji & Yamamoto, Kazuhiro, 2013. "Experimental study of hexagonal and square diesel particulate filters under controlled and uncontrolled catalyzed regeneration," Energy, Elsevier, vol. 60(C), pages 325-332.
    3. Galindo, José & Serrano, José Ramón & Piqueras, Pedro & García-Afonso, Óscar, 2012. "Heat transfer modelling in honeycomb wall-flow diesel particulate filters," Energy, Elsevier, vol. 43(1), pages 201-213.
    4. Serrano, José Ramón & Arnau, Francisco José & Piqueras, Pedro & García-Afonso, Óscar, 2013. "Packed bed of spherical particles approach for pressure drop prediction in wall-flow DPFs (diesel particulate filters) under soot loading conditions," Energy, Elsevier, vol. 58(C), pages 644-654.
    5. Lapuerta, Magín & Rodríguez-Fernández, José & Oliva, Fermín, 2012. "Effect of soot accumulation in a diesel particle filter on the combustion process and gaseous emissions," Energy, Elsevier, vol. 47(1), pages 543-552.
    6. Luján, José Manuel & Serrano, José Ramón & Piqueras, Pedro & García-Afonso, Óscar, 2015. "Experimental assessment of a pre-turbo aftertreatment configuration in a single stage turbocharged diesel engine. Part 2: Transient operation," Energy, Elsevier, vol. 80(C), pages 614-627.
    7. Feng, Hongqing & Zheng, Zunqing & Yao, Mingfa & Cheng, Gang & Wang, Meiying & Wang, Xin, 2013. "Effects of exhaust gas recirculation on low temperature combustion using wide distillation range diesel," Energy, Elsevier, vol. 51(C), pages 291-296.
    8. Zhu, Mingming & Ma, Yu & Zhang, Dongke, 2011. "An experimental study of the effect of a homogeneous combustion catalyst on fuel consumption and smoke emission in a diesel engine," Energy, Elsevier, vol. 36(10), pages 6004-6009.
    9. Giakoumis, Evangelos G. & Dimaratos, Athanasios M. & Rakopoulos, Constantine D., 2011. "Experimental study of combustion noise radiation during transient turbocharged diesel engine operation," Energy, Elsevier, vol. 36(8), pages 4983-4995.
    10. Shin, Yoon Hyuk & Kim, Sung Chul & Kim, Min Soo, 2013. "Use of electromagnetic clutch water pumps in vehicle engine cooling systems to reduce fuel consumption," Energy, Elsevier, vol. 57(C), pages 624-631.
    11. Bermúdez, Vicente & Luján, José Manuel & Piqueras, Pedro & Campos, Daniel, 2014. "Pollutants emission and particle behavior in a pre-turbo aftertreatment light-duty diesel engine," Energy, Elsevier, vol. 66(C), pages 509-522.
    12. Yunus khan, T.M. & Badruddin, Irfan Anjum & Badarudin, Ahmad & Banapurmath, N.R. & Salman Ahmed, N.J. & Quadir, G.A. & Al-Rashed, Abdullah A.A.A. & Khaleed, H.M.T. & Kamangar, Sarfaraz, 2015. "Effects of engine variables and heat transfer on the performance of biodiesel fueled IC engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 682-691.
    13. Luján, José Manuel & Bermúdez, Vicente & Piqueras, Pedro & García-Afonso, Óscar, 2015. "Experimental assessment of pre-turbo aftertreatment configurations in a single stage turbocharged diesel engine. Part 1: Steady-state operation," Energy, Elsevier, vol. 80(C), pages 599-613.
    14. Payri, Francisco & Olmeda, Pablo & Arnau, Francisco J. & Dombrovsky, Artem & Smith, Les, 2014. "External heat losses in small turbochargers: Model and experiments," Energy, Elsevier, vol. 71(C), pages 534-546.
    15. Cornolti, L. & Onorati, A. & Cerri, T. & Montenegro, G. & Piscaglia, F., 2013. "1D simulation of a turbocharged Diesel engine with comparison of short and long EGR route solutions," Applied Energy, Elsevier, vol. 111(C), pages 1-15.
    16. Jiaqiang, E & Zhao, Xiaohuan & Xie, Longfu & Zhang, Bin & Chen, Jingwei & Zuo, Qingsong & Han, Dandan & Hu, Wenyu & Zhang, Zhiqing, 2019. "Performance enhancement of microwave assisted regeneration in a wall-flow diesel particulate filter based on field synergy theory," Energy, Elsevier, vol. 169(C), pages 719-729.
    17. Gonca, Guven & Sahin, Bahri & Ust, Yasin, 2013. "Performance maps for an air-standard irreversible Dual–Miller cycle (DMC) with late inlet valve closing (LIVC) version," Energy, Elsevier, vol. 54(C), pages 285-290.
    18. Seok, Jungmin & Chun, Kwang Min & Song, Soonho & Lee, Jeongmin, 2014. "An empirical study of the dry soot filtration behavior of a metal foam filter on a particle number concentration basis," Energy, Elsevier, vol. 76(C), pages 949-957.
    19. Vallinayagam, R. & Vedharaj, S. & Yang, W.M. & Lee, P.S. & Chua, K.J.E. & Chou, S.K., 2013. "Combustion performance and emission characteristics study of pine oil in a diesel engine," Energy, Elsevier, vol. 57(C), pages 344-351.
    20. Chintala, V. & Subramanian, K.A., 2015. "Experimental investigations on effect of different compression ratios on enhancement of maximum hydrogen energy share in a compression ignition engine under dual-fuel mode," Energy, Elsevier, vol. 87(C), pages 448-462.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:36:y:2011:i:12:p:6731-6744. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.