IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v111y2013icp1-15.html
   My bibliography  Save this article

1D simulation of a turbocharged Diesel engine with comparison of short and long EGR route solutions

Author

Listed:
  • Cornolti, L.
  • Onorati, A.
  • Cerri, T.
  • Montenegro, G.
  • Piscaglia, F.

Abstract

This paper describes a detailed analysis of the unsteady flows in the intake and exhaust systems of a modern four-cylinder, turbocharged Diesel engine with different EGR circuits, by means of a research 1D thermo-fluid dynamic tool and detailed experimental data.

Suggested Citation

  • Cornolti, L. & Onorati, A. & Cerri, T. & Montenegro, G. & Piscaglia, F., 2013. "1D simulation of a turbocharged Diesel engine with comparison of short and long EGR route solutions," Applied Energy, Elsevier, vol. 111(C), pages 1-15.
  • Handle: RePEc:eee:appene:v:111:y:2013:i:c:p:1-15
    DOI: 10.1016/j.apenergy.2013.04.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261913003103
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2013.04.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Piscaglia, F. & Ferrari, G., 2009. "A novel 1D approach for the simulation of unsteady reacting flows in diesel exhaust after-treatment systems," Energy, Elsevier, vol. 34(12), pages 2051-2062.
    2. D'Errico, G. & Cerri, T. & Pertusi, G., 2011. "Multi-objective optimization of internal combustion engine by means of 1D fluid-dynamic models," Applied Energy, Elsevier, vol. 88(3), pages 767-777, March.
    3. Zamboni, Giorgio & Capobianco, Massimo, 2012. "Experimental study on the effects of HP and LP EGR in an automotive turbocharged diesel engine," Applied Energy, Elsevier, vol. 94(C), pages 117-128.
    4. Millo, Federico & Giacominetto, Paolo Ferrero & Bernardi, Marco Gianoglio, 2012. "Analysis of different exhaust gas recirculation architectures for passenger car Diesel engines," Applied Energy, Elsevier, vol. 98(C), pages 79-91.
    5. Bermúdez, Vicente & Lujan, José M. & Pla, Benjamín & Linares, Waldemar G., 2011. "Effects of low pressure exhaust gas recirculation on regulated and unregulated gaseous emissions during NEDC in a light-duty diesel engine," Energy, Elsevier, vol. 36(9), pages 5655-5665.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrés Omar Tiseira Izaguirre & Roberto Navarro García & Lukas Benjamin Inhestern & Natalia Hervás Gómez, 2020. "Design and Numerical Analysis of Flow Characteristics in a Scaled Volute and Vaned Nozzle of Radial Turbocharger Turbines," Energies, MDPI, vol. 13(11), pages 1-19, June.
    2. Reihani, Amin & Hoard, John & Klinkert, Stefan & Kuan, Chih-Kuang & Styles, Daniel & McConville, Greg, 2020. "Experimental response surface study of the effects of low-pressure exhaust gas recirculation mixing on turbocharger compressor performance," Applied Energy, Elsevier, vol. 261(C).
    3. Wang, Chongming & Xu, Hongming & Herreros, Jose Martin & Wang, Jianxin & Cracknell, Roger, 2014. "Impact of fuel and injection system on particle emissions from a GDI engine," Applied Energy, Elsevier, vol. 132(C), pages 178-191.
    4. Serrano, José Ramón & Olmeda, Pablo & Arnau, Francisco J. & Dombrovsky, Artem & Smith, Les, 2015. "Turbocharger heat transfer and mechanical losses influence in predicting engines performance by using one-dimensional simulation codes," Energy, Elsevier, vol. 86(C), pages 204-218.
    5. Serrano, J.R. & Climent, H. & Piqueras, P. & Angiolini, E., 2014. "Analysis of fluid-dynamic guidelines in diesel particulate filter sizing for fuel consumption reduction in post-turbo and pre-turbo placement," Applied Energy, Elsevier, vol. 132(C), pages 507-523.
    6. Asad, Usman & Zheng, Ming, 2014. "Exhaust gas recirculation for advanced diesel combustion cycles," Applied Energy, Elsevier, vol. 123(C), pages 242-252.
    7. Zhu, Dengting & Zheng, Xinqian, 2018. "A new asymmetric twin-scroll turbine with two wastegates for energy improvements in diesel engines," Applied Energy, Elsevier, vol. 223(C), pages 263-272.
    8. Tauzia, Xavier & Maiboom, Alain & Karaky, Hassan, 2017. "Semi-physical models to assess the influence of CI engine calibration parameters on NOx and soot emissions," Applied Energy, Elsevier, vol. 208(C), pages 1505-1518.
    9. Charles E. Sprouse, 2024. "Review of Organic Rankine Cycles for Internal Combustion Engine Waste Heat Recovery: Latest Decade in Review," Sustainability, MDPI, vol. 16(5), pages 1-74, February.
    10. Tadros, M. & Ventura, M. & Guedes Soares, C., 2019. "Optimization procedure to minimize fuel consumption of a four-stroke marine turbocharged diesel engine," Energy, Elsevier, vol. 168(C), pages 897-908.
    11. Wenyu Gu & Wanhua Su, 2023. "Study on the Effects of Exhaust Gas Recirculation and Fuel Injection Strategy on Transient Process Performance of Diesel Engines," Sustainability, MDPI, vol. 15(16), pages 1-21, August.
    12. Andwari, Amin Mahmoudzadeh & Aziz, Azhar Abdul & Said, Mohd Farid Muhamad & Latiff, Zulkarnain Abdul, 2014. "Experimental investigation of the influence of internal and external EGR on the combustion characteristics of a controlled auto-ignition two-stroke cycle engine," Applied Energy, Elsevier, vol. 134(C), pages 1-10.
    13. Decan, Gilles & Broekaert, Stijn & Lucchini, Tommaso & D’Errico, Gianluca & Vierendeels, Jan & Verhelst, Sebastian, 2018. "Evaluation of wall heat flux calculation methods for CFD simulations of an internal combustion engine under both motored and HCCI operation," Applied Energy, Elsevier, vol. 232(C), pages 451-461.
    14. Li, Ji & Zhou, Quan & Williams, Huw & Xu, Pu & Xu, Hongming & Lu, Guoxiang, 2022. "Fuzzy-tree-constructed data-efficient modelling methodology for volumetric efficiency of dedicated hybrid engines," Applied Energy, Elsevier, vol. 310(C).
    15. Wenyu Gu & Wanhua Su, 2023. "Study on the Effect of Exhaust Gas Recirculation Coupled Variable Geometry Turbocharger and Fuel Quantity Control on Transient Performance of Turbocharged Diesel Engine," Energies, MDPI, vol. 16(16), pages 1-20, August.
    16. Zdeslav Jurić & Roko Kutija & Tino Vidović & Gojmir Radica, 2022. "Parameter Variation Study of Two-Stroke Low-Speed Diesel Engine Using Multi-Zone Combustion Model," Energies, MDPI, vol. 15(16), pages 1-15, August.
    17. Mehrshad Kolahchian Tabrizi & Tarcisio Cerri & Davide Bonalumi & Tommaso Lucchini & Morris Brenna, 2024. "Retrofit of Diesel Engines with H 2 for Potential Decarbonization of Non-Electrified Railways: Assessment with Lifecycle Analysis and Advanced Numerical Modeling," Energies, MDPI, vol. 17(5), pages 1-14, February.
    18. Giorgio Zamboni & Simone Moggia & Massimo Capobianco, 2017. "Effects of a Dual-Loop Exhaust Gas Recirculation System and Variable Nozzle Turbine Control on the Operating Parameters of an Automotive Diesel Engine," Energies, MDPI, vol. 10(1), pages 1-18, January.
    19. Zamboni, Giorgio & Moggia, Simone & Capobianco, Massimo, 2016. "Hybrid EGR and turbocharging systems control for low NOX and fuel consumption in an automotive diesel engine," Applied Energy, Elsevier, vol. 165(C), pages 839-848.
    20. Thangaraja, J. & Kannan, C., 2016. "Effect of exhaust gas recirculation on advanced diesel combustion and alternate fuels - A review," Applied Energy, Elsevier, vol. 180(C), pages 169-184.
    21. Yoon, Wonjun & Kim, Jonghyun & Chung, Chungsoo & Park, Jungsoo, 2022. "Numerical study on prediction of icing phenomena in intake system of diesel engine: Operating conditions with low-to-middle velocity of inlet air," Energy, Elsevier, vol. 248(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tauzia, Xavier & Maiboom, Alain, 2013. "Experimental study of an automotive Diesel engine efficiency when running under stoichiometric conditions," Applied Energy, Elsevier, vol. 105(C), pages 116-124.
    2. Park, Jungsoo & Song, Soonho & Lee, Kyo Seung, 2015. "Numerical investigation of a dual-loop EGR split strategy using a split index and multi-objective Pareto optimization," Applied Energy, Elsevier, vol. 142(C), pages 21-32.
    3. Zamboni, Giorgio & Moggia, Simone & Capobianco, Massimo, 2016. "Hybrid EGR and turbocharging systems control for low NOX and fuel consumption in an automotive diesel engine," Applied Energy, Elsevier, vol. 165(C), pages 839-848.
    4. Liu, Bolan & Zhang, Fujun & Zhao, Changlu & An, Xiaohui & Pei, Haijun, 2016. "A novel lambda-based EGR (exhaust gas recirculation) modulation method for a turbocharged diesel engine under transient operation," Energy, Elsevier, vol. 96(C), pages 521-530.
    5. Yin, Lianhao & Turesson, Gabriel & Tunestål, Per & Johansson, Rolf, 2019. "Evaluation and transient control of an advanced multi-cylinder engine based on partially premixed combustion," Applied Energy, Elsevier, vol. 233, pages 1015-1026.
    6. Payri, F. & Broatch, A. & Serrano, J.R. & Piqueras, P., 2011. "Experimental–theoretical methodology for determination of inertial pressure drop distribution and pore structure properties in wall-flow diesel particulate filters (DPFs)," Energy, Elsevier, vol. 36(12), pages 6731-6744.
    7. Giorgio Zamboni & Simone Moggia & Massimo Capobianco, 2017. "Effects of a Dual-Loop Exhaust Gas Recirculation System and Variable Nozzle Turbine Control on the Operating Parameters of an Automotive Diesel Engine," Energies, MDPI, vol. 10(1), pages 1-18, January.
    8. Park, Youngsoo & Bae, Choongsik, 2014. "Experimental study on the effects of high/low pressure EGR proportion in a passenger car diesel engine," Applied Energy, Elsevier, vol. 133(C), pages 308-316.
    9. Luján, José Manuel & Guardiola, Carlos & Pla, Benjamín & Reig, Alberto, 2015. "Switching strategy between HP (high pressure)- and LPEGR (low pressure exhaust gas recirculation) systems for reduced fuel consumption and emissions," Energy, Elsevier, vol. 90(P2), pages 1790-1798.
    10. Tsuneyoshi, Koji & Yamamoto, Kazuhiro, 2013. "Experimental study of hexagonal and square diesel particulate filters under controlled and uncontrolled catalyzed regeneration," Energy, Elsevier, vol. 60(C), pages 325-332.
    11. Wang, Dawei & Shi, Lei & Zhu, Sipeng & Liu, Bo & Qian, Yuehua & Deng, Kangyao, 2020. "Numerical and thermodynamic study on effects of high and low pressure exhaust gas recirculation on turbocharged marine low-speed engine," Applied Energy, Elsevier, vol. 261(C).
    12. Raptotasios, Spiridon I. & Sakellaridis, Nikolaos F. & Papagiannakis, Roussos G. & Hountalas, Dimitrios T., 2015. "Application of a multi-zone combustion model to investigate the NOx reduction potential of two-stroke marine diesel engines using EGR," Applied Energy, Elsevier, vol. 157(C), pages 814-823.
    13. Asad, Usman & Zheng, Ming, 2014. "Exhaust gas recirculation for advanced diesel combustion cycles," Applied Energy, Elsevier, vol. 123(C), pages 242-252.
    14. Molina, S. & García, A. & Pastor, J.M. & Belarte, E. & Balloul, I., 2015. "Operating range extension of RCCI combustion concept from low to full load in a heavy-duty engine," Applied Energy, Elsevier, vol. 143(C), pages 211-227.
    15. Tsuneyoshi, Koji & Yamamoto, Kazuhiro, 2012. "A study on the cell structure and the performances of wall-flow diesel particulate filter," Energy, Elsevier, vol. 48(1), pages 492-499.
    16. Yoon, Wonjun & Kim, Jonghyun & Chung, Chungsoo & Park, Jungsoo, 2022. "Numerical study on prediction of icing phenomena in intake system of diesel engine: Operating conditions with low-to-middle velocity of inlet air," Energy, Elsevier, vol. 248(C).
    17. Avola, Calogero & Copeland, Colin D. & Burke, Richard D. & Brace, Chris J., 2017. "Effect of inter-stage phenomena on the performance prediction of two-stage turbocharging systems," Energy, Elsevier, vol. 134(C), pages 743-756.
    18. Keramiotis, Ch. & Vourliotakis, G. & Skevis, G. & Founti, M.A. & Esarte, C. & Sánchez, N.E. & Millera, A. & Bilbao, R. & Alzueta, M.U., 2012. "Experimental and computational study of methane mixtures pyrolysis in a flow reactor under atmospheric pressure," Energy, Elsevier, vol. 43(1), pages 103-110.
    19. Singh, Paramvir & Varun, & Chauhan, S.R., 2016. "Carbonyl and aromatic hydrocarbon emissions from diesel engine exhaust using different feedstock: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 269-291.
    20. Richard Fiifi Turkson & Fuwu Yan & Mohamed Kamal Ahmed Ali & Bo Liu & Jie Hu, 2016. "Modeling and Multi-Objective Optimization of Engine Performance and Hydrocarbon Emissions via the Use of a Computer Aided Engineering Code and the NSGA-II Genetic Algorithm," Sustainability, MDPI, vol. 8(1), pages 1-15, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:111:y:2013:i:c:p:1-15. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.