IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v34y2009i4p448-456.html
   My bibliography  Save this article

Optimal chilled water temperature calculation of multiple chiller systems using Hopfield neural network for saving energy

Author

Listed:
  • Chang, Yung-Chung
  • Chen, Wu-Hsing

Abstract

The values of chilled water supply temperatures in chillers indicate the load distributions as the chilled water return temperatures in all chillers are the same in a decoupled air-conditioning system. This study employs the Hopfield neural network (HNN) to determine the chilled water supply temperatures in chillers, which are used to solve the optimal chiller loading (OCL) problem. A linear input–output model is utilized as a substitute for the sigmoid function, which eliminates the shortcoming of the conventional HNN method. Notably, HNN overcomes the flaw in the Lagrangian method in that the latter cannot be utilized for solving the OCL problem as its power-consumption models include non-convex functions. The chilled water supply temperatures are used as variables to be solved for a decoupled air-conditioning system and solve the problem using the HNN method to overcome the defect in the Lagrangian method. After analysis of the case study and comparison of results using these two methods, we conclude that the HNN method solves the problem of the Lagrangian method, and produces highly accurate results. The HNN method can be applied to the operation of air-conditioning systems.

Suggested Citation

  • Chang, Yung-Chung & Chen, Wu-Hsing, 2009. "Optimal chilled water temperature calculation of multiple chiller systems using Hopfield neural network for saving energy," Energy, Elsevier, vol. 34(4), pages 448-456.
  • Handle: RePEc:eee:energy:v:34:y:2009:i:4:p:448-456
    DOI: 10.1016/j.energy.2008.12.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544208003265
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2008.12.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hu, S.-C. & Chuah, Y.K., 2003. "Power consumption of semiconductor fabs in Taiwan," Energy, Elsevier, vol. 28(8), pages 895-907.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jing, Gang & Cai, Wenjian & Zhang, Xin & Cui, Can & Yin, Xiaohong & Xian, Huacai, 2019. "An energy-saving oriented air balancing strategy for multi-zone demand-controlled ventilation system," Energy, Elsevier, vol. 172(C), pages 1053-1065.
    2. Liu, Xue-feng & Liu, Jin-ping & Lu, Ji-dong & Liu, Lei & Zou, Wei, 2012. "Research on operating characteristics of direct-return chilled water system controlled by variable temperature difference," Energy, Elsevier, vol. 40(1), pages 236-249.
    3. Kusiak, Andrew & Xu, Guanglin & Tang, Fan, 2011. "Optimization of an HVAC system with a strength multi-objective particle-swarm algorithm," Energy, Elsevier, vol. 36(10), pages 5935-5943.
    4. Yani Bao & Wai Ling Lee & Jie Jia, 2018. "Exergy Analyses and Modelling of a Novel Extra-Low Temperature Dedicated Outdoor Air System," Energies, MDPI, vol. 11(5), pages 1-25, May.
    5. Jiaqi Cao & Shiyu Zhou & Tao Wang & Baoqi Shan & Xueping Liu, 2023. "Research on a Variable Water Supply Temperature Strategy for a Ground-Source Heat Pump System Based on TRNSYS-GENOPT (TRNOPT) Optimization," Sustainability, MDPI, vol. 15(5), pages 1-14, March.
    6. Kusiak, Andrew & Li, Mingyang, 2009. "Optimal decision making in ventilation control," Energy, Elsevier, vol. 34(11), pages 1835-1845.
    7. Whei-Min Lin & Chia-Sheng Tu & Ming-Tang Tsai & Chi-Chun Lo, 2015. "Optimal Energy Reduction Schedules for Ice Storage Air-Conditioning Systems," Energies, MDPI, vol. 8(9), pages 1-18, September.
    8. Ma, Zhenjun & Wang, Shengwei, 2011. "Enhancing the performance of large primary-secondary chilled water systems by using bypass check valve," Energy, Elsevier, vol. 36(1), pages 268-276.
    9. Liu, Xuefeng & Xu, Jinman & Bi, Mengbo & Ma, Wenjing & Chen, Wencong & Zheng, Minglong, 2024. "Multivariate coupled full-case physical model of large chilled water systems and its application," Energy, Elsevier, vol. 298(C).
    10. Wang, Yijun & Jin, Xinqiao & Shi, Wantao & Wang, Jiangqing, 2019. "Online chiller loading strategy based on the near-optimal performance map for energy conservation," Applied Energy, Elsevier, vol. 238(C), pages 1444-1451.
    11. Coelho, Leandro dos Santos & Klein, Carlos Eduardo & Sabat, Samrat L. & Mariani, Viviana Cocco, 2014. "Optimal chiller loading for energy conservation using a new differential cuckoo search approach," Energy, Elsevier, vol. 75(C), pages 237-243.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Min-Suk Jo & Jang-Hoon Shin & Won-Jun Kim & Jae-Weon Jeong, 2017. "Energy-Saving Benefits of Adiabatic Humidification in the Air Conditioning Systems of Semiconductor Cleanrooms," Energies, MDPI, vol. 10(11), pages 1-23, November.
    2. Zhao, Wenxuan & Li, Hangxin & Wang, Shengwei, 2024. "A generic design optimization framework for semiconductor cleanroom air-conditioning systems integrating heat recovery and free cooling for enhanced energy performance," Energy, Elsevier, vol. 286(C).
    3. Zhao, Wenxuan & Li, Hangxin & Wang, Shengwei, 2022. "A comparative analysis on alternative air-conditioning systems for high-tech cleanrooms and their performance in different climate zones," Energy, Elsevier, vol. 261(PA).
    4. Xu, Tengfang & Flapper, Joris & Kramer, Klaas Jan, 2009. "Characterization of energy use and performance of global cheese processing," Energy, Elsevier, vol. 34(11), pages 1993-2000.
    5. Foo, Dominic C.Y. & Ng, Denny K.S. & Leong, Malwynn K.Y. & Chew, Irene M.L. & Subramaniam, Mahendran & Aziz, Ramlan & Lee, Jui-Yuan, 2014. "Targeting and design of chilled water network," Applied Energy, Elsevier, vol. 134(C), pages 589-599.
    6. Armin Ibitz, 2020. "Assessing Taiwan’s endeavors towards a circular economy: the electronics sector," Asia Europe Journal, Springer, vol. 18(4), pages 493-510, December.
    7. Lee, Chien-Chiang & Chang, Chun-Ping, 2007. "The impact of energy consumption on economic growth: Evidence from linear and nonlinear models in Taiwan," Energy, Elsevier, vol. 32(12), pages 2282-2294.
    8. Chang, Yung-Chung, 2006. "An innovative approach for demand side management—optimal chiller loading by simulated annealing," Energy, Elsevier, vol. 31(12), pages 1883-1896.
    9. Cheng-Kuang Chang & Tee Lin & Shih-Cheng Hu & Ben-Ran Fu & Jung-Sheng Hsu, 2016. "Various Energy-Saving Approaches to a TFT-LCD Panel Fab," Sustainability, MDPI, vol. 8(9), pages 1-10, September.
    10. Chang, Yung-Chung & Chan, Tien-Shun & Lee, Wen-Shing, 2010. "Economic dispatch of chiller plant by gradient method for saving energy," Applied Energy, Elsevier, vol. 87(4), pages 1096-1101, April.
    11. Hu, Shih-Cheng & Xu, Tengfang & Chaung, Tony & Chan, David Y.-L., 2010. "Characterization of energy use in 300 mm DRAM (Dynamic Random Access Memory) wafer fabrication plants (fabs) in Taiwan," Energy, Elsevier, vol. 35(9), pages 3788-3792.
    12. Xu, Tengfang & Flapper, Joris, 2009. "Energy use and implications for efficiency strategies in global fluid-milk processing industry," Energy Policy, Elsevier, vol. 37(12), pages 5334-5341, December.
    13. Chang, Cheng-Kuang & Hu, Shih-Cheng & Liu, Vincent & Chan, David Yi-Liang & Huang, Chin-Yi & Weng, Ling-Chia, 2012. "Specific energy consumption of dynamic random access memory module supply chain in Taiwan," Energy, Elsevier, vol. 41(1), pages 508-513.
    14. Gao, Wei & Feng, Xiao, 2017. "The power target of a fluid machinery network in a circulating water system," Applied Energy, Elsevier, vol. 205(C), pages 847-854.
    15. Mieczysław Porowski & Monika Jakubiak, 2022. "Energy-Optimal Structures of HVAC System for Cleanrooms as a Function of Key Constant Parameters and External Climate," Energies, MDPI, vol. 15(1), pages 1-41, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:34:y:2009:i:4:p:448-456. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.