IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v134y2014icp589-599.html
   My bibliography  Save this article

Targeting and design of chilled water network

Author

Listed:
  • Foo, Dominic C.Y.
  • Ng, Denny K.S.
  • Leong, Malwynn K.Y.
  • Chew, Irene M.L.
  • Subramaniam, Mahendran
  • Aziz, Ramlan
  • Lee, Jui-Yuan

Abstract

Chilled water is a common cooling agent used in various industrial, commercial and institutional facilities. In conventional practice, chilled water is distributed via chilled water networks (CHWNs) in parallel configuration to provide required air conditioning and/or equipment cooling in the heating, ventilating and air conditioning (HVAC) system. In this paper, process integration approach based on pinch analysis technique is used to address energy efficiency issues in the CHWN system for grassroots design problem. Graphical and algebraic targeting techniques are developed to identify the minimum chilled water flowrate needed to remove a given amount of heat load from the CHWN. Doing this leads to higher chilled water return temperature and enhanced energy efficiency of the HVAC system. A recent proposed network design technique is extended to synthesize the CHWN in a mixed series/parallel configuration. A novel concept of integrated cooling and chilled water networks (IWN) is also proposed in this work, with its targeting and design techniques presented. Hypothetical examples and an industrial case study are solved to elucidate the proposed approaches.

Suggested Citation

  • Foo, Dominic C.Y. & Ng, Denny K.S. & Leong, Malwynn K.Y. & Chew, Irene M.L. & Subramaniam, Mahendran & Aziz, Ramlan & Lee, Jui-Yuan, 2014. "Targeting and design of chilled water network," Applied Energy, Elsevier, vol. 134(C), pages 589-599.
  • Handle: RePEc:eee:appene:v:134:y:2014:i:c:p:589-599
    DOI: 10.1016/j.apenergy.2014.07.106
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261914007971
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2014.07.106?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hu, S.-C. & Chuah, Y.K., 2003. "Power consumption of semiconductor fabs in Taiwan," Energy, Elsevier, vol. 28(8), pages 895-907.
    2. Shenoy, Akshay U. & Shenoy, Uday V., 2013. "Targeting and design of CWNs (cooling water networks)," Energy, Elsevier, vol. 55(C), pages 1033-1043.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Safder, Usman & Lim, Juin Yau & How, Bing Shen & Ifaei, Pouya & Heo, SungKy & Yoo, ChangKyoo, 2022. "Optimal configuration and economic analysis of PRO-retrofitted industrial networks for sustainable energy production and material recovery considering uncertainties: Bioethanol and sugar mill case stu," Renewable Energy, Elsevier, vol. 182(C), pages 797-816.
    2. Wan Alwi, Sharifah Rafidah & Manan, Zainuddin Abd, 2016. "Simultaneous energy targeting, placement of utilities with flue gas, and design of heat recovery networks," Applied Energy, Elsevier, vol. 161(C), pages 605-610.
    3. Diban, Pitchaimuthu & Foo, Dominic C.Y., 2018. "Targeting and design of heating utility system for offshore platform," Energy, Elsevier, vol. 146(C), pages 98-111.
    4. Ho, Wai Shin & Hashim, Haslenda & Lim, Jeng Shiun & Lee, Chew Tin & Sam, Kah Chiin & Tan, Sie Ting, 2017. "Waste Management Pinch Analysis (WAMPA): Application of Pinch Analysis for greenhouse gas (GHG) emission reduction in municipal solid waste management," Applied Energy, Elsevier, vol. 185(P2), pages 1481-1489.
    5. Chan, Wai Mun & Leong, Yik Teeng & Foo, Ji Jinn & Chew, Irene Mei Leng, 2017. "Synthesis of energy efficient chilled and cooling water network by integrating waste heat recovery refrigeration system," Energy, Elsevier, vol. 141(C), pages 1555-1568.
    6. Diban, Pitchaimuthu & Foo, Dominic C.Y., 2019. "A pinch-based automated targeting technique for heating medium system," Energy, Elsevier, vol. 166(C), pages 193-212.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Min-Suk Jo & Jang-Hoon Shin & Won-Jun Kim & Jae-Weon Jeong, 2017. "Energy-Saving Benefits of Adiabatic Humidification in the Air Conditioning Systems of Semiconductor Cleanrooms," Energies, MDPI, vol. 10(11), pages 1-23, November.
    2. Zhao, Wenxuan & Li, Hangxin & Wang, Shengwei, 2024. "A generic design optimization framework for semiconductor cleanroom air-conditioning systems integrating heat recovery and free cooling for enhanced energy performance," Energy, Elsevier, vol. 286(C).
    3. Diban, Pitchaimuthu & Foo, Dominic C.Y., 2018. "Targeting and design of heating utility system for offshore platform," Energy, Elsevier, vol. 146(C), pages 98-111.
    4. Zhao, Wenxuan & Li, Hangxin & Wang, Shengwei, 2022. "A comparative analysis on alternative air-conditioning systems for high-tech cleanrooms and their performance in different climate zones," Energy, Elsevier, vol. 261(PA).
    5. Zhang, Haitian & Feng, Xiao & Wang, Yufei & Zhang, Zhen, 2019. "Sequential optimization of cooler and pump networks with different types of cooling," Energy, Elsevier, vol. 179(C), pages 815-822.
    6. Xu, Tengfang & Flapper, Joris & Kramer, Klaas Jan, 2009. "Characterization of energy use and performance of global cheese processing," Energy, Elsevier, vol. 34(11), pages 1993-2000.
    7. Lee, Chien-Chiang & Chang, Chun-Ping, 2007. "The impact of energy consumption on economic growth: Evidence from linear and nonlinear models in Taiwan," Energy, Elsevier, vol. 32(12), pages 2282-2294.
    8. Cheng-Kuang Chang & Tee Lin & Shih-Cheng Hu & Ben-Ran Fu & Jung-Sheng Hsu, 2016. "Various Energy-Saving Approaches to a TFT-LCD Panel Fab," Sustainability, MDPI, vol. 8(9), pages 1-10, September.
    9. Chang, Cheng-Kuang & Hu, Shih-Cheng & Liu, Vincent & Chan, David Yi-Liang & Huang, Chin-Yi & Weng, Ling-Chia, 2012. "Specific energy consumption of dynamic random access memory module supply chain in Taiwan," Energy, Elsevier, vol. 41(1), pages 508-513.
    10. Gao, Wei & Feng, Xiao, 2017. "The power target of a fluid machinery network in a circulating water system," Applied Energy, Elsevier, vol. 205(C), pages 847-854.
    11. Mieczysław Porowski & Monika Jakubiak, 2022. "Energy-Optimal Structures of HVAC System for Cleanrooms as a Function of Key Constant Parameters and External Climate," Energies, MDPI, vol. 15(1), pages 1-41, January.
    12. Chang, Yung-Chung & Chen, Wu-Hsing, 2009. "Optimal chilled water temperature calculation of multiple chiller systems using Hopfield neural network for saving energy," Energy, Elsevier, vol. 34(4), pages 448-456.
    13. Armin Ibitz, 2020. "Assessing Taiwan’s endeavors towards a circular economy: the electronics sector," Asia Europe Journal, Springer, vol. 18(4), pages 493-510, December.
    14. Chang, Yung-Chung, 2006. "An innovative approach for demand side management—optimal chiller loading by simulated annealing," Energy, Elsevier, vol. 31(12), pages 1883-1896.
    15. Ma, Jiaze & Wang, Yufei & Feng, Xiao, 2017. "Energy recovery in cooling water system by hydro turbines," Energy, Elsevier, vol. 139(C), pages 329-340.
    16. Chang, Yung-Chung & Chan, Tien-Shun & Lee, Wen-Shing, 2010. "Economic dispatch of chiller plant by gradient method for saving energy," Applied Energy, Elsevier, vol. 87(4), pages 1096-1101, April.
    17. Hu, Shih-Cheng & Xu, Tengfang & Chaung, Tony & Chan, David Y.-L., 2010. "Characterization of energy use in 300 mm DRAM (Dynamic Random Access Memory) wafer fabrication plants (fabs) in Taiwan," Energy, Elsevier, vol. 35(9), pages 3788-3792.
    18. Xu, Tengfang & Flapper, Joris, 2009. "Energy use and implications for efficiency strategies in global fluid-milk processing industry," Energy Policy, Elsevier, vol. 37(12), pages 5334-5341, December.
    19. Ma, Jiaze & Wang, Yufei & Feng, Xiao, 2018. "Optimization of multi-plants cooling water system," Energy, Elsevier, vol. 150(C), pages 797-815.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:134:y:2014:i:c:p:589-599. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.