IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v172y2019icp1053-1065.html
   My bibliography  Save this article

An energy-saving oriented air balancing strategy for multi-zone demand-controlled ventilation system

Author

Listed:
  • Jing, Gang
  • Cai, Wenjian
  • Zhang, Xin
  • Cui, Can
  • Yin, Xiaohong
  • Xian, Huacai

Abstract

For addressing the energy waste resulted by over-ventilation or under-ventilation in conventional demand-controlled ventilation system, an air balancing strategy is proposed to solve the over-ventilation and under-ventilation problems of the multi-zone demand-controlled ventilation system. In this study, an energy-saving oriented mathematical model is constructed to simulate the non-linear behavior of the multi-zone ventilation system and Bayesian linear regression supervised machine learning algorithm is used to estimate the unknown parameters of the constructed model. On the basis of the developed model, the damper control method is established to determine the position of the damper according to the desired airflow rate to ensure the system well-balanced. Therefore, with the constructed system model and the damper control method, the system can be well-balanced to overcome the disadvantages of over-ventilation and under-ventilation, and consumes less energy compared to the system that are not balanced. The performance of the proposed air balancing strategy for demand-controlled ventilation system is practically tested in an experimental rig with five terminals and validated by comparing to the demand-controlled ventilation strategy without air balancing. The experimental results demonstrate that the proposed strategy achieved the desired airflow rate within 4.6% maximum absolute percentage error, and also achieved a maximum value 14.3% for fan power reduction compared to conventional the strategy without air balancing.

Suggested Citation

  • Jing, Gang & Cai, Wenjian & Zhang, Xin & Cui, Can & Yin, Xiaohong & Xian, Huacai, 2019. "An energy-saving oriented air balancing strategy for multi-zone demand-controlled ventilation system," Energy, Elsevier, vol. 172(C), pages 1053-1065.
  • Handle: RePEc:eee:energy:v:172:y:2019:i:c:p:1053-1065
    DOI: 10.1016/j.energy.2019.02.044
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219302336
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.02.044?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mossolly, M. & Ghali, K. & Ghaddar, N., 2009. "Optimal control strategy for a multi-zone air conditioning system using a genetic algorithm," Energy, Elsevier, vol. 34(1), pages 58-66.
    2. da Graça Carvalho, Maria, 2012. "EU energy and climate change strategy," Energy, Elsevier, vol. 40(1), pages 19-22.
    3. Chang, Yung-Chung & Chen, Wu-Hsing, 2009. "Optimal chilled water temperature calculation of multiple chiller systems using Hopfield neural network for saving energy," Energy, Elsevier, vol. 34(4), pages 448-456.
    4. Walter, Travis & Sohn, Michael D., 2016. "A regression-based approach to estimating retrofit savings using the Building Performance Database," Applied Energy, Elsevier, vol. 179(C), pages 996-1005.
    5. Peng, Yuzhen & Rysanek, Adam & Nagy, Zoltán & Schlüter, Arno, 2018. "Using machine learning techniques for occupancy-prediction-based cooling control in office buildings," Applied Energy, Elsevier, vol. 211(C), pages 1343-1358.
    6. Ke, Yu-Pei & Mumma, Stanley A., 1997. "Optimized supply-air temperature (SAT) in variable-air-volume (VAV) systems," Energy, Elsevier, vol. 22(6), pages 601-614.
    7. Chua, K.J. & Chou, S.K. & Yang, W.M. & Yan, J., 2013. "Achieving better energy-efficient air conditioning – A review of technologies and strategies," Applied Energy, Elsevier, vol. 104(C), pages 87-104.
    8. Zaheer-Uddin, M., 1993. "Energy start-stop and fluid flow regulated control of multizone HVAC systems," Energy, Elsevier, vol. 18(3), pages 289-302.
    9. Braun, M.R. & Altan, H. & Beck, S.B.M., 2014. "Using regression analysis to predict the future energy consumption of a supermarket in the UK," Applied Energy, Elsevier, vol. 130(C), pages 305-313.
    10. Kusiak, Andrew & Li, Mingyang & Zhang, Zijun, 2010. "A data-driven approach for steam load prediction in buildings," Applied Energy, Elsevier, vol. 87(3), pages 925-933, March.
    11. Jing, Gang & Cai, Wenjian & Zhang, Xin & Cui, Can & Yin, Xiaohong & Xian, Huacai, 2019. "Modeling, air balancing and optimal pressure set-point selection for the ventilation system with minimized energy consumption," Applied Energy, Elsevier, vol. 236(C), pages 574-589.
    12. Turanjanin, Valentina & Vučićević, Biljana & Jovanović, Marina & Mirkov, Nikola & Lazović, Ivan, 2014. "Indoor CO2 measurements in Serbian schools and ventilation rate calculation," Energy, Elsevier, vol. 77(C), pages 290-296.
    13. Kusiak, Andrew & Li, Mingyang, 2009. "Optimal decision making in ventilation control," Energy, Elsevier, vol. 34(11), pages 1835-1845.
    14. Rana, Rajib & Kusy, Brano & Wall, Josh & Hu, Wen, 2015. "Novel activity classification and occupancy estimation methods for intelligent HVAC (heating, ventilation and air conditioning) systems," Energy, Elsevier, vol. 93(P1), pages 245-255.
    15. Yang, Zheng & Ghahramani, Ali & Becerik-Gerber, Burcin, 2016. "Building occupancy diversity and HVAC (heating, ventilation, and air conditioning) system energy efficiency," Energy, Elsevier, vol. 109(C), pages 641-649.
    16. Zheng, G.R. & Zaheer-Uddin, M., 1996. "Optimization of thermal processes in a variable air volume HVAC system," Energy, Elsevier, vol. 21(5), pages 407-420.
    17. Wang, Siyan & Sun, Xun & Lall, Upmanu, 2017. "A hierarchical Bayesian regression model for predicting summer residential electricity demand across the U.S.A," Energy, Elsevier, vol. 140(P1), pages 601-611.
    18. Schibuola, Luigi & Scarpa, Massimiliano & Tambani, Chiara, 2018. "CO2 based ventilation control in energy retrofit: An experimental assessment," Energy, Elsevier, vol. 143(C), pages 606-614.
    19. Galatioto, A. & Ciulla, G. & Ricciu, R., 2017. "An overview of energy retrofit actions feasibility on Italian historical buildings," Energy, Elsevier, vol. 137(C), pages 991-1000.
    20. Tashtoush, Bourhan & Molhim, M. & Al-Rousan, M., 2005. "Dynamic model of an HVAC system for control analysis," Energy, Elsevier, vol. 30(10), pages 1729-1745.
    21. Chang, Yung-Chung, 2006. "An innovative approach for demand side management—optimal chiller loading by simulated annealing," Energy, Elsevier, vol. 31(12), pages 1883-1896.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cui, Can & Zhang, Xin & Cai, Wenjian, 2020. "An energy-saving oriented air balancing method for demand controlled ventilation systems with branch and black-box model," Applied Energy, Elsevier, vol. 264(C).
    2. Jing, Gang & Cai, Wenjian & Zhang, Xin & Cui, Can & Liu, Hongwu & Wang, Cheng, 2020. "An energy-saving control strategy for multi-zone demand controlled ventilation system with data-driven model and air balancing control," Energy, Elsevier, vol. 199(C).
    3. Jahangir Hossain & Aida. F. A. Kadir & Ainain. N. Hanafi & Hussain Shareef & Tamer Khatib & Kyairul. A. Baharin & Mohamad. F. Sulaima, 2023. "A Review on Optimal Energy Management in Commercial Buildings," Energies, MDPI, vol. 16(4), pages 1-40, February.
    4. Mu, Yuanpeng & Zhang, Jili & Ma, Zhixian & Liu, Mingsheng, 2023. "A novel air flowrate control method based on terminal damper opening prediction in multi-zone VAV system," Energy, Elsevier, vol. 263(PD).
    5. Cheng, Fanyong & Cui, Can & Cai, Wenjian & Zhang, Xin & Ge, Yuan & Li, Bingxu, 2022. "A novel data-driven air balancing method with energy-saving constraint strategy to minimize the energy consumption of ventilation system," Energy, Elsevier, vol. 239(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jing, Gang & Cai, Wenjian & Zhang, Xin & Cui, Can & Yin, Xiaohong & Xian, Huacai, 2019. "Modeling, air balancing and optimal pressure set-point selection for the ventilation system with minimized energy consumption," Applied Energy, Elsevier, vol. 236(C), pages 574-589.
    2. Kusiak, Andrew & Li, Mingyang, 2009. "Optimal decision making in ventilation control," Energy, Elsevier, vol. 34(11), pages 1835-1845.
    3. Jing, Gang & Cai, Wenjian & Zhang, Xin & Cui, Can & Liu, Hongwu & Wang, Cheng, 2020. "An energy-saving control strategy for multi-zone demand controlled ventilation system with data-driven model and air balancing control," Energy, Elsevier, vol. 199(C).
    4. Okochi, Godwine Swere & Yao, Ye, 2016. "A review of recent developments and technological advancements of variable-air-volume (VAV) air-conditioning systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 784-817.
    5. Kusiak, Andrew & Xu, Guanglin & Tang, Fan, 2011. "Optimization of an HVAC system with a strength multi-objective particle-swarm algorithm," Energy, Elsevier, vol. 36(10), pages 5935-5943.
    6. Mossolly, M. & Ghali, K. & Ghaddar, N., 2009. "Optimal control strategy for a multi-zone air conditioning system using a genetic algorithm," Energy, Elsevier, vol. 34(1), pages 58-66.
    7. Kusiak, Andrew & Li, Mingyang, 2010. "Reheat optimization of the variable-air-volume box," Energy, Elsevier, vol. 35(5), pages 1997-2005.
    8. Kusiak, Andrew & Tang, Fan & Xu, Guanglin, 2011. "Multi-objective optimization of HVAC system with an evolutionary computation algorithm," Energy, Elsevier, vol. 36(5), pages 2440-2449.
    9. Schibuola, Luigi & Scarpa, Massimiliano & Tambani, Chiara, 2018. "CO2 based ventilation control in energy retrofit: An experimental assessment," Energy, Elsevier, vol. 143(C), pages 606-614.
    10. Cui, Can & Xue, Jing, 2024. "Energy and comfort aware operation of multi-zone HVAC system through preference-inspired deep reinforcement learning," Energy, Elsevier, vol. 292(C).
    11. Han, H.J. & Jeon, Y.I. & Lim, S.H. & Kim, W.W. & Chen, K., 2010. "New developments in illumination, heating and cooling technologies for energy-efficient buildings," Energy, Elsevier, vol. 35(6), pages 2647-2653.
    12. Zhang, Liang & Wen, Jin & Li, Yanfei & Chen, Jianli & Ye, Yunyang & Fu, Yangyang & Livingood, William, 2021. "A review of machine learning in building load prediction," Applied Energy, Elsevier, vol. 285(C).
    13. Khan, Muhammad Waqas & Choudhry, Mohammad Ahmad & Zeeshan, Muhammad & Ali, Ahsan, 2015. "Adaptive fuzzy multivariable controller design based on genetic algorithm for an air handling unit," Energy, Elsevier, vol. 81(C), pages 477-488.
    14. Li, Bingxu & Wu, Bingjie & Peng, Yelun & Cai, Wenjian, 2022. "Tube-based robust model predictive control of multi-zone demand-controlled ventilation systems for energy saving and indoor air quality," Applied Energy, Elsevier, vol. 307(C).
    15. Cui, X. & Islam, M.R. & Chua, K.J., 2019. "Experimental study and energy saving potential analysis of a hybrid air treatment cooling system in tropical climates," Energy, Elsevier, vol. 172(C), pages 1016-1026.
    16. Cheng, Fanyong & Cui, Can & Cai, Wenjian & Zhang, Xin & Ge, Yuan & Li, Bingxu, 2022. "A novel data-driven air balancing method with energy-saving constraint strategy to minimize the energy consumption of ventilation system," Energy, Elsevier, vol. 239(PB).
    17. Alperen Yayla & Kübra Sultan Świerczewska & Mahmut Kaya & Bahadır Karaca & Yusuf Arayici & Yunus Emre Ayözen & Onur Behzat Tokdemir, 2022. "Artificial Intelligence (AI)-Based Occupant-Centric Heating Ventilation and Air Conditioning (HVAC) Control System for Multi-Zone Commercial Buildings," Sustainability, MDPI, vol. 14(23), pages 1-29, December.
    18. Wang, Yijun & Jin, Xinqiao & Shi, Wantao & Wang, Jiangqing, 2019. "Online chiller loading strategy based on the near-optimal performance map for energy conservation," Applied Energy, Elsevier, vol. 238(C), pages 1444-1451.
    19. Chiu, Chien-Chin & Tsai, Nan-Chyuan & Lin, Chun-Chi, 2014. "Near-optimal order-reduced control for A/C (air-conditioning) system of EVs (electric vehicles)," Energy, Elsevier, vol. 66(C), pages 342-353.
    20. Muhammad Fayaz & DoHyeun Kim, 2018. "Energy Consumption Optimization and User Comfort Management in Residential Buildings Using a Bat Algorithm and Fuzzy Logic," Energies, MDPI, vol. 11(1), pages 1-22, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:172:y:2019:i:c:p:1053-1065. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.