IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v298y2024ics0360544224010880.html
   My bibliography  Save this article

Multivariate coupled full-case physical model of large chilled water systems and its application

Author

Listed:
  • Liu, Xuefeng
  • Xu, Jinman
  • Bi, Mengbo
  • Ma, Wenjing
  • Chen, Wencong
  • Zheng, Minglong

Abstract

Chilled water systems in large-scale central air conditioning consume more than 30 % of the total energy. To reduce this energy consumption, a model can be used to explore the optimal operating parameters of chilled water systems. The chilled water system is a multivariable highly coupled nonlinear system. The type and number of variables change with the hydraulic characteristics of the piping network and the operating data sparsity is high. For these reasons, data-driven methods are not suitable for modeling chilled water systems. Therefore, there is an urgent need to develop a model that is not constrained by the type and number of variables and can establish a complete data structure. According to the principles of differential pressure equilibrium, flow conservation, and thermal equilibrium, this study establishes a physical model of the hydraulic–thermal coupling of chilled water systems. The hydraulic–thermal characteristics of chilled water systems under multiple operating conditions were investigated, and the reliability of the model was verified through experiments. Furthermore, the difficulty of effective modeling owing to dynamic changes in the types of variables and lack of operating data were addressed. The study showed that the model has a wide range of applications, high reliability, and high computational efficiency.

Suggested Citation

  • Liu, Xuefeng & Xu, Jinman & Bi, Mengbo & Ma, Wenjing & Chen, Wencong & Zheng, Minglong, 2024. "Multivariate coupled full-case physical model of large chilled water systems and its application," Energy, Elsevier, vol. 298(C).
  • Handle: RePEc:eee:energy:v:298:y:2024:i:c:s0360544224010880
    DOI: 10.1016/j.energy.2024.131315
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224010880
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131315?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mossolly, M. & Ghali, K. & Ghaddar, N., 2009. "Optimal control strategy for a multi-zone air conditioning system using a genetic algorithm," Energy, Elsevier, vol. 34(1), pages 58-66.
    2. Trautman, Neal & Razban, Ali & Chen, Jie, 2021. "Overall chilled water system energy consumption modeling and optimization," Applied Energy, Elsevier, vol. 299(C).
    3. Chang, Yung-Chung & Chen, Wu-Hsing, 2009. "Optimal chilled water temperature calculation of multiple chiller systems using Hopfield neural network for saving energy," Energy, Elsevier, vol. 34(4), pages 448-456.
    4. Thangavelu, Sundar Raj & Myat, Aung & Khambadkone, Ashwin, 2017. "Energy optimization methodology of multi-chiller plant in commercial buildings," Energy, Elsevier, vol. 123(C), pages 64-76.
    5. Kusiak, Andrew & Tang, Fan & Xu, Guanglin, 2011. "Multi-objective optimization of HVAC system with an evolutionary computation algorithm," Energy, Elsevier, vol. 36(5), pages 2440-2449.
    6. Jung, Wooyoung & Jazizadeh, Farrokh, 2019. "Human-in-the-loop HVAC operations: A quantitative review on occupancy, comfort, and energy-efficiency dimensions," Applied Energy, Elsevier, vol. 239(C), pages 1471-1508.
    7. Kusiak, Andrew & Li, Mingyang & Tang, Fan, 2010. "Modeling and optimization of HVAC energy consumption," Applied Energy, Elsevier, vol. 87(10), pages 3092-3102, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kusiak, Andrew & Xu, Guanglin & Tang, Fan, 2011. "Optimization of an HVAC system with a strength multi-objective particle-swarm algorithm," Energy, Elsevier, vol. 36(10), pages 5935-5943.
    2. Afroz, Zakia & Shafiullah, GM & Urmee, Tania & Higgins, Gary, 2018. "Modeling techniques used in building HVAC control systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 83(C), pages 64-84.
    3. Alperen Yayla & Kübra Sultan Świerczewska & Mahmut Kaya & Bahadır Karaca & Yusuf Arayici & Yunus Emre Ayözen & Onur Behzat Tokdemir, 2022. "Artificial Intelligence (AI)-Based Occupant-Centric Heating Ventilation and Air Conditioning (HVAC) Control System for Multi-Zone Commercial Buildings," Sustainability, MDPI, vol. 14(23), pages 1-29, December.
    4. Jing, Gang & Cai, Wenjian & Zhang, Xin & Cui, Can & Liu, Hongwu & Wang, Cheng, 2020. "An energy-saving control strategy for multi-zone demand controlled ventilation system with data-driven model and air balancing control," Energy, Elsevier, vol. 199(C).
    5. Guiqiang Wang & Haiman Wang & Zhiqiang Kang & Guohui Feng, 2020. "Data-Driven Optimization for Capacity Control of Multiple Ground Source Heat Pump System in Heating Mode," Energies, MDPI, vol. 13(14), pages 1-15, July.
    6. Jing, Gang & Cai, Wenjian & Zhang, Xin & Cui, Can & Yin, Xiaohong & Xian, Huacai, 2019. "An energy-saving oriented air balancing strategy for multi-zone demand-controlled ventilation system," Energy, Elsevier, vol. 172(C), pages 1053-1065.
    7. Liu, Xuefeng & Huang, Bin & Zheng, Yulan, 2023. "Control strategy for dynamic operation of multiple chillers under random load constraints," Energy, Elsevier, vol. 270(C).
    8. Wang, Xinli & Cai, Wenjian & Yin, Xiaohong, 2017. "A global optimized operation strategy for energy savings in liquid desiccant air conditioning using self-adaptive differential evolutionary algorithm," Applied Energy, Elsevier, vol. 187(C), pages 410-423.
    9. Junqi Wang & Rundong Liu & Linfeng Zhang & Hussain Syed ASAD & Erlin Meng, 2019. "Triggering Optimal Control of Air Conditioning Systems by Event-Driven Mechanism: Comparing Direct and Indirect Approaches," Energies, MDPI, vol. 12(20), pages 1-20, October.
    10. Kusiak, Andrew & Xu, Guanglin, 2012. "Modeling and optimization of HVAC systems using a dynamic neural network," Energy, Elsevier, vol. 42(1), pages 241-250.
    11. Kusiak, Andrew & Li, Mingyang, 2009. "Optimal decision making in ventilation control," Energy, Elsevier, vol. 34(11), pages 1835-1845.
    12. Sha, Huajing & Xu, Peng & Yang, Zhiwei & Chen, Yongbao & Tang, Jixu, 2019. "Overview of computational intelligence for building energy system design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 76-90.
    13. Alessia Arteconi & Fabio Polonara, 2018. "Assessing the Demand Side Management Potential and the Energy Flexibility of Heat Pumps in Buildings," Energies, MDPI, vol. 11(7), pages 1-19, July.
    14. Wang, Xinli & Cai, Wenjian & Lu, Jiangang & Sun, Youxian & Zhao, Lei, 2015. "Model-based optimization strategy of chiller driven liquid desiccant dehumidifier with genetic algorithm," Energy, Elsevier, vol. 82(C), pages 939-948.
    15. Baldi, Simone & Zhang, Fan & Le Quang, Thuan & Endel, Petr & Holub, Ondrej, 2019. "Passive versus active learning in operation and adaptive maintenance of Heating, Ventilation, and Air Conditioning," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    16. Yani Bao & Wai Ling Lee & Jie Jia, 2018. "Exergy Analyses and Modelling of a Novel Extra-Low Temperature Dedicated Outdoor Air System," Energies, MDPI, vol. 11(5), pages 1-25, May.
    17. Zhen Yang & Jinhong Du & Yiting Lin & Zhen Du & Li Xia & Qianchuan Zhao & Xiaohong Guan, 2022. "Increasing the energy efficiency of a data center based on machine learning," Journal of Industrial Ecology, Yale University, vol. 26(1), pages 323-335, February.
    18. Jiaqi Cao & Shiyu Zhou & Tao Wang & Baoqi Shan & Xueping Liu, 2023. "Research on a Variable Water Supply Temperature Strategy for a Ground-Source Heat Pump System Based on TRNSYS-GENOPT (TRNOPT) Optimization," Sustainability, MDPI, vol. 15(5), pages 1-14, March.
    19. Muhammad Fayaz & DoHyeun Kim, 2018. "Energy Consumption Optimization and User Comfort Management in Residential Buildings Using a Bat Algorithm and Fuzzy Logic," Energies, MDPI, vol. 11(1), pages 1-22, January.
    20. Rongjiang Ma & Xianlin Wang & Ming Shan & Nanyang Yu & Shen Yang, 2020. "Recognition of Variable-Speed Equipment in an Air-Conditioning System Using Numerical Analysis of Energy-Consumption Data," Energies, MDPI, vol. 13(18), pages 1-14, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:298:y:2024:i:c:s0360544224010880. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.