IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v286y2024ics0360544223029948.html
   My bibliography  Save this article

A generic design optimization framework for semiconductor cleanroom air-conditioning systems integrating heat recovery and free cooling for enhanced energy performance

Author

Listed:
  • Zhao, Wenxuan
  • Li, Hangxin
  • Wang, Shengwei

Abstract

High-tech industrial buildings, such as semiconductor cleanrooms, generally require strict temperature, humidity, and cleanliness controls, resulting in very high energy consumption of their air-conditioning systems. However, there exist two important problems in these air-conditioning systems, i.e., large cold-heat offset and low cooling efficiency. These two serious issues are generally neglected during the design stage and further cause great energy waste during the operation stage. This study therefore proposes a generic air-conditioning system design optimization framework for semiconductor cleanrooms by integrating heat recovery and free cooling techniques at air-side and water-side, respectively. The proposed design framework can fully eliminate cold-heat offset, simultaneously reduce cooling/heating loads and enhance cooling efficiency under full-range semiconductor applications. By detailed modeling and simulations, the proposed design framework is validated and tested under various indoor cooling loads, ventilation rates, and surrounding weather and climate conditions. Results show that 2.3–33.1 % energy savings are achieved and up to 15.8GJ/m2 annual primary energy is saved, compared with the conventional design. It is also observed that cities in cold and mild climates have higher energy-saving potentials than those in hot climates. It is recommended to utilize the proposed design framework as a benchmarking air-conditioning system design in new semiconductor cleanrooms.

Suggested Citation

  • Zhao, Wenxuan & Li, Hangxin & Wang, Shengwei, 2024. "A generic design optimization framework for semiconductor cleanroom air-conditioning systems integrating heat recovery and free cooling for enhanced energy performance," Energy, Elsevier, vol. 286(C).
  • Handle: RePEc:eee:energy:v:286:y:2024:i:c:s0360544223029948
    DOI: 10.1016/j.energy.2023.129600
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223029948
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129600?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhao, Wenxuan & Li, Hangxin & Wang, Shengwei, 2022. "A comparative analysis on alternative air-conditioning systems for high-tech cleanrooms and their performance in different climate zones," Energy, Elsevier, vol. 261(PA).
    2. Kuo-Hao Chang & Yi-Jyun Sun & Chi-An Lai & Li-Der Chen & Chih-Hung Wang & Chung-Jung Chen & Chih-Ming Lin, 2022. "Big data analytics energy-saving strategies for air compressors in the semiconductor industry – an empirical study," International Journal of Production Research, Taylor & Francis Journals, vol. 60(6), pages 1782-1794, March.
    3. Lu, Yuehong & Wang, Shengwei & Yan, Chengchu & Huang, Zhijia, 2017. "Robust optimal design of renewable energy system in nearly/net zero energy buildings under uncertainties," Applied Energy, Elsevier, vol. 187(C), pages 62-71.
    4. Hu, S.-C. & Chuah, Y.K., 2003. "Power consumption of semiconductor fabs in Taiwan," Energy, Elsevier, vol. 28(8), pages 895-907.
    5. Zhang, Yingbo & Shan, Kui & Li, Xiuming & Li, Hangxin & Wang, Shengwei, 2023. "Research and Technologies for next-generation high-temperature data centers – State-of-the-arts and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    6. Shih-Cheng Hu & Tee Lin & Ben-Ran Fu & Cheng-Kung Chang & I-Yun Cheng, 2019. "Analysis of energy efficiency improvement of high-tech fabrication plants," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 14(4), pages 508-515.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu, Azhi & Ye, Qing & Li, Jinlong & Li, Xinhao & Wang, Yao & Rui, Qingqing, 2024. "Economic, environmental, energy, exergy (4E) analysis and simulated annealing algorithm optimization of dividing-wall column-intensified heterogeneous azeotropic pressure-swing distillation process," Energy, Elsevier, vol. 296(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mieczysław Porowski & Monika Jakubiak, 2022. "Energy-Optimal Structures of HVAC System for Cleanrooms as a Function of Key Constant Parameters and External Climate," Energies, MDPI, vol. 15(1), pages 1-41, January.
    2. Han, Shulun & Sun, Yuying & Wang, Wei & Xu, Wenjing & Wei, Wenzhe, 2023. "Optimal design method for electrochromic window split-pane configuration to enhance building energy efficiency," Renewable Energy, Elsevier, vol. 219(P1).
    3. Taveres-Cachat, Ellika & Lobaccaro, Gabriele & Goia, Francesco & Chaudhary, Gaurav, 2019. "A methodology to improve the performance of PV integrated shading devices using multi-objective optimization," Applied Energy, Elsevier, vol. 247(C), pages 731-744.
    4. Song, Yanwu & Dong, Ying, 2024. "Influence of resource compensation and complete information on green sustainability of semiconductor supply chains," International Journal of Production Economics, Elsevier, vol. 271(C).
    5. Zheng, Deyuan & Song, Hang & Zhao, Chunguang & Liu, Yujiao & Zhao, Wenhao, 2024. "Is it possible for semiconductor companies to reduce carbon emissions through digital transformation? Evidence from China," International Journal of Production Economics, Elsevier, vol. 272(C).
    6. Delia D’Agostino & Danny Parker & Ilenia Epifani & Dru Crawley & Linda Lawrie, 2022. "Datasets on Energy Simulations of Standard and Optimized Buildings under Current and Future Weather Conditions across Europe," Data, MDPI, vol. 7(5), pages 1-18, May.
    7. Binju P Raj & Chandan Swaroop Meena & Nehul Agarwal & Lohit Saini & Shabir Hussain Khahro & Umashankar Subramaniam & Aritra Ghosh, 2021. "A Review on Numerical Approach to Achieve Building Energy Efficiency for Energy, Economy and Environment (3E) Benefit," Energies, MDPI, vol. 14(15), pages 1-26, July.
    8. D'Alessandro, Antonella & Pisello, Anna Laura & Fabiani, Claudia & Ubertini, Filippo & Cabeza, Luisa F. & Cotana, Franco, 2018. "Multifunctional smart concretes with novel phase change materials: Mechanical and thermo-energy investigation," Applied Energy, Elsevier, vol. 212(C), pages 1448-1461.
    9. Min-Suk Jo & Jang-Hoon Shin & Won-Jun Kim & Jae-Weon Jeong, 2017. "Energy-Saving Benefits of Adiabatic Humidification in the Air Conditioning Systems of Semiconductor Cleanrooms," Energies, MDPI, vol. 10(11), pages 1-23, November.
    10. Haleh Moghaddasi & Charles Culp & Jorge Vanegas & Mehrdad Ehsani, 2021. "Net Zero Energy Buildings: Variations, Clarifications, and Requirements in Response to the Paris Agreement," Energies, MDPI, vol. 14(13), pages 1-21, June.
    11. Sharma, Vanika & Haque, Mohammed H. & Aziz, Syed Mahfuzul, 2019. "Energy cost minimization for net zero energy homes through optimal sizing of battery storage system," Renewable Energy, Elsevier, vol. 141(C), pages 278-286.
    12. Zhao, Wenxuan & Li, Hangxin & Wang, Shengwei, 2022. "A comparative analysis on alternative air-conditioning systems for high-tech cleanrooms and their performance in different climate zones," Energy, Elsevier, vol. 261(PA).
    13. Xu, Tengfang & Flapper, Joris & Kramer, Klaas Jan, 2009. "Characterization of energy use and performance of global cheese processing," Energy, Elsevier, vol. 34(11), pages 1993-2000.
    14. Kotireddy, Rajesh & Hoes, Pieter-Jan & Hensen, Jan L.M., 2018. "A methodology for performance robustness assessment of low-energy buildings using scenario analysis," Applied Energy, Elsevier, vol. 212(C), pages 428-442.
    15. Lee, Chien-Chiang & Chang, Chun-Ping, 2007. "The impact of energy consumption on economic growth: Evidence from linear and nonlinear models in Taiwan," Energy, Elsevier, vol. 32(12), pages 2282-2294.
    16. Caro-Ruiz, C. & Lombardi, P. & Richter, M. & Pelzer, A. & Komarnicki, P. & Pavas, A. & Mojica-Nava, E., 2019. "Coordination of optimal sizing of energy storage systems and production buffer stocks in a net zero energy factory," Applied Energy, Elsevier, vol. 238(C), pages 851-862.
    17. Lu, Yuehong & Zhang, Xiao-Ping & Huang, Zhijia & Lu, Jinli & Wang, Dong, 2019. "Impact of introducing penalty-cost on optimal design of renewable energy systems for net zero energy buildings," Applied Energy, Elsevier, vol. 235(C), pages 106-116.
    18. Du, Yahui & Zhou, Zhihua & Yang, Xiaochen & Yang, Xueqing & Wang, Cheng & Liu, Junwei & Yuan, Jianjuan, 2023. "Dynamic thermal environment management technologies for data center: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    19. Cheng-Kuang Chang & Tee Lin & Shih-Cheng Hu & Ben-Ran Fu & Jung-Sheng Hsu, 2016. "Various Energy-Saving Approaches to a TFT-LCD Panel Fab," Sustainability, MDPI, vol. 8(9), pages 1-10, September.
    20. Tao Lv & Yuehong Lu & Yijie Zhou & Xuemei Liu & Changlong Wang & Yang Zhang & Zhijia Huang & Yanhong Sun, 2022. "Optimal Control of Energy Systems in Net-Zero Energy Buildings Considering Dynamic Costs: A Case Study of Zero Carbon Building in Hong Kong," Sustainability, MDPI, vol. 14(6), pages 1-25, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:286:y:2024:i:c:s0360544223029948. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.