Characterization of energy use in 300 mm DRAM (Dynamic Random Access Memory) wafer fabrication plants (fabs) in Taiwan
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2010.05.030
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Hu, S.-C. & Chuah, Y.K., 2003. "Power consumption of semiconductor fabs in Taiwan," Energy, Elsevier, vol. 28(8), pages 895-907.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Chang, Cheng-Kuang & Hu, Shih-Cheng & Liu, Vincent & Chan, David Yi-Liang & Huang, Chin-Yi & Weng, Ling-Chia, 2012. "Specific energy consumption of dynamic random access memory module supply chain in Taiwan," Energy, Elsevier, vol. 41(1), pages 508-513.
- Hsin-Chieh Wu & Horng-Ren Tsai & Tin-Chih Toly Chen & Keng-Wei Hsu, 2021. "Energy-Efficient Production Planning Using a Two-Stage Fuzzy Approach," Mathematics, MDPI, vol. 9(10), pages 1-17, May.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Min-Suk Jo & Jang-Hoon Shin & Won-Jun Kim & Jae-Weon Jeong, 2017. "Energy-Saving Benefits of Adiabatic Humidification in the Air Conditioning Systems of Semiconductor Cleanrooms," Energies, MDPI, vol. 10(11), pages 1-23, November.
- Zhao, Wenxuan & Li, Hangxin & Wang, Shengwei, 2024. "A generic design optimization framework for semiconductor cleanroom air-conditioning systems integrating heat recovery and free cooling for enhanced energy performance," Energy, Elsevier, vol. 286(C).
- Zhao, Wenxuan & Li, Hangxin & Wang, Shengwei, 2022. "A comparative analysis on alternative air-conditioning systems for high-tech cleanrooms and their performance in different climate zones," Energy, Elsevier, vol. 261(PA).
- Xu, Tengfang & Flapper, Joris & Kramer, Klaas Jan, 2009. "Characterization of energy use and performance of global cheese processing," Energy, Elsevier, vol. 34(11), pages 1993-2000.
- Foo, Dominic C.Y. & Ng, Denny K.S. & Leong, Malwynn K.Y. & Chew, Irene M.L. & Subramaniam, Mahendran & Aziz, Ramlan & Lee, Jui-Yuan, 2014. "Targeting and design of chilled water network," Applied Energy, Elsevier, vol. 134(C), pages 589-599.
- Armin Ibitz, 2020. "Assessing Taiwan’s endeavors towards a circular economy: the electronics sector," Asia Europe Journal, Springer, vol. 18(4), pages 493-510, December.
- Lee, Chien-Chiang & Chang, Chun-Ping, 2007. "The impact of energy consumption on economic growth: Evidence from linear and nonlinear models in Taiwan," Energy, Elsevier, vol. 32(12), pages 2282-2294.
- Chang, Yung-Chung, 2006. "An innovative approach for demand side management—optimal chiller loading by simulated annealing," Energy, Elsevier, vol. 31(12), pages 1883-1896.
- Cheng-Kuang Chang & Tee Lin & Shih-Cheng Hu & Ben-Ran Fu & Jung-Sheng Hsu, 2016. "Various Energy-Saving Approaches to a TFT-LCD Panel Fab," Sustainability, MDPI, vol. 8(9), pages 1-10, September.
- Chaudhuri, Ranjan & Singh, Bindu & Agrawal, Amit Kumar & Chatterjee, Sheshadri & Gupta, Shivam & Mangla, Sachin Kumar, 2024. "A TOE-DCV approach to green supply chain adoption for sustainable operations in the semiconductor industry," International Journal of Production Economics, Elsevier, vol. 275(C).
- Chang, Yung-Chung & Chan, Tien-Shun & Lee, Wen-Shing, 2010. "Economic dispatch of chiller plant by gradient method for saving energy," Applied Energy, Elsevier, vol. 87(4), pages 1096-1101, April.
- Xu, Tengfang & Flapper, Joris, 2009. "Energy use and implications for efficiency strategies in global fluid-milk processing industry," Energy Policy, Elsevier, vol. 37(12), pages 5334-5341, December.
- Chang, Cheng-Kuang & Hu, Shih-Cheng & Liu, Vincent & Chan, David Yi-Liang & Huang, Chin-Yi & Weng, Ling-Chia, 2012. "Specific energy consumption of dynamic random access memory module supply chain in Taiwan," Energy, Elsevier, vol. 41(1), pages 508-513.
- Gao, Wei & Feng, Xiao, 2017. "The power target of a fluid machinery network in a circulating water system," Applied Energy, Elsevier, vol. 205(C), pages 847-854.
- Mieczysław Porowski & Monika Jakubiak, 2022. "Energy-Optimal Structures of HVAC System for Cleanrooms as a Function of Key Constant Parameters and External Climate," Energies, MDPI, vol. 15(1), pages 1-41, January.
- Chang, Yung-Chung & Chen, Wu-Hsing, 2009. "Optimal chilled water temperature calculation of multiple chiller systems using Hopfield neural network for saving energy," Energy, Elsevier, vol. 34(4), pages 448-456.
More about this item
Keywords
Energy utilization; Capacity utilization; DRAM; Energy efficiency;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:35:y:2010:i:9:p:3788-3792. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.