IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v309y2024ics0360544224028391.html
   My bibliography  Save this article

A novel load allocation strategy based on the adaptive chiller model with data augmentation

Author

Listed:
  • Jia, Zhiyang
  • Jin, Xinqiao
  • Lyu, Yuan
  • Xue, Qi
  • Du, Zhimin

Abstract

Model-based load allocation strategy is an impactful solution to enhance energy efficiency of multiple-chiller system. Its performance is heavily dependent on the accuracy of chiller model. Data-driven model is a pretty-good solution. However, in real multiple-chiller system, the range of operation condition in historical data is commonly narrow, so it is challenging to develop an accurate data-driven model of chiller throughout full range of operation condition. In this paper, data augmentation algorithm is presented to generate the data outside of historical data, which is based on conditional generative adversarial network (CGAN) and elastic weight consolidation algorithm (EWC). Combined historical data and generated data, augmented training dataset is set up and updated by online operation data. Trained by online updated augmented training dataset periodically, adaptive chiller model is set up. Based on adaptive chiller model, a novel load allocation strategy presented for multiple-chiller system. The proposed strategy is verified by field test in multiple-chiller system. The results show that adaptive chiller model, with the aid of data augmentation algorithm, is more accurate. The proposed strategy can achieve 5.03 % energy saving compared with fixed set-point strategy, and the EER of proposed strategy is 6.27 % higher than that of fixed set-point strategy.

Suggested Citation

  • Jia, Zhiyang & Jin, Xinqiao & Lyu, Yuan & Xue, Qi & Du, Zhimin, 2024. "A novel load allocation strategy based on the adaptive chiller model with data augmentation," Energy, Elsevier, vol. 309(C).
  • Handle: RePEc:eee:energy:v:309:y:2024:i:c:s0360544224028391
    DOI: 10.1016/j.energy.2024.133064
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224028391
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.133064?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:309:y:2024:i:c:s0360544224028391. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.