IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v300y2024ics036054422401332x.html
   My bibliography  Save this article

Modelling and operation characteristics of air-cooled PEMFC with metallic bipolar plate used in unmanned aerial vehicle

Author

Listed:
  • Meng, Huanru
  • Yu, Xianxian
  • Luo, Xiaobing
  • Tu, Zhengkai

Abstract

The air-cooled proton exchange membrane fuel cell stack composed of the metallic bipolar plate with simple system and lightweight characteristics, is regarded as an ideal power source for unmanned aerial vehicles. A zero-dimensional model is developed to analyze the operation characteristics at heights in the range of 0–3000 m. The temperature should not exceed 60 °C to ensure safe and effective operation. The peak power decreases by 20 % and the stack has good adaptability to altitudes. The performance degradation can be largely attributed to the lower oxygen pressure at high altitudes through normalization analysis. It is more significant at higher current densities owing to increased air starvation. The increase of the air stoichiometry is conducive to heat dissipation and reduces mass transfer loss. The voltage initially increases and then decreases as the air stoichiometry increases, and the optimal air stoichiometry corresponding to the maximum voltage is determined. Appropriately increasing the air stoichiometry can improve the consistency of the temperature and voltage distributions.

Suggested Citation

  • Meng, Huanru & Yu, Xianxian & Luo, Xiaobing & Tu, Zhengkai, 2024. "Modelling and operation characteristics of air-cooled PEMFC with metallic bipolar plate used in unmanned aerial vehicle," Energy, Elsevier, vol. 300(C).
  • Handle: RePEc:eee:energy:v:300:y:2024:i:c:s036054422401332x
    DOI: 10.1016/j.energy.2024.131559
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422401332X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131559?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gong, Chengyuan & Xing, Lu & Liang, Cong & Tu, Zhengkai, 2022. "Modeling and dynamic characteristic simulation of air-cooled proton exchange membrane fuel cell stack for unmanned aerial vehicle," Renewable Energy, Elsevier, vol. 188(C), pages 1094-1104.
    2. Santos, Diogo F.M. & Ferreira, Rui B. & Falcão, D.S. & Pinto, A.M.F.R., 2022. "Evaluation of a fuel cell system designed for unmanned aerial vehicles," Energy, Elsevier, vol. 253(C).
    3. Zhang, Jian & Huang, Pengyi & Ding, Honghui & Xin, Dongqun & Sun, Shufeng, 2023. "Investigation of the three-dimensional flow field for proton exchange membrane fuel cell with additive manufactured stainless steel bipolar plates: Numerical simulation and experiments," Energy, Elsevier, vol. 269(C).
    4. Xiao, Fei & Chen, Tao & Gan, Zhongyu & Zhang, Ruixuan, 2023. "The influence of external operating conditions on membrane drying faults of proton-exchange membrane fuel cells," Energy, Elsevier, vol. 285(C).
    5. Li, Yubai & Zhou, Zhifu & Liu, Xianglei & Wu, Wei-Tao, 2019. "Modeling of PEM fuel cell with thin MEA under low humidity operating condition," Applied Energy, Elsevier, vol. 242(C), pages 1513-1527.
    6. Chang, Huawei & Cai, Fengyang & Yu, Xianxian & Duan, Chen & Chan, Siew Hwa & Tu, Zhengkai, 2023. "Experimental study on the thermal management of an open-cathode air-cooled proton exchange membrane fuel cell stack with ultra-thin metal bipolar plates," Energy, Elsevier, vol. 263(PA).
    7. Kui Jiao & Jin Xuan & Qing Du & Zhiming Bao & Biao Xie & Bowen Wang & Yan Zhao & Linhao Fan & Huizhi Wang & Zhongjun Hou & Sen Huo & Nigel P. Brandon & Yan Yin & Michael D. Guiver, 2021. "Designing the next generation of proton-exchange membrane fuel cells," Nature, Nature, vol. 595(7867), pages 361-369, July.
    8. Miao, Tianwei & Tongsh, Chasen & Wang, Jianan & Cheng, Peng & Liang, Jinqiao & Wang, Zixuan & Chen, Wenmiao & Zhang, Chao & Xi, Fuqiang & Du, Qing & Wang, Bowen & Bai, Fuqiang & Jiao, Kui, 2022. "Current density and temperature distribution measurement and homogeneity analysis for a large-area proton exchange membrane fuel cell," Energy, Elsevier, vol. 239(PA).
    9. Hu, Bin & He, Guangjian & Chang, Fulu & Yang, Han & Cao, Xianwu & Yin, Xiaochun, 2022. "Low filler and highly conductive composite bipolar plates with synergistic segregated structure for enhanced proton exchange membrane fuel cell performance," Energy, Elsevier, vol. 251(C).
    10. Chu, Tiankuo & Wang, Qinpu & Xie, Meng & Wang, Baoyun & Yang, Daijun & Li, Bing & Ming, Pingwen & Zhang, Cunman, 2022. "Investigation of the reversible performance degradation mechanism of the PEMFC stack during long-term durability test," Energy, Elsevier, vol. 258(C).
    11. González-Espasandín, Óscar & Leo, Teresa J. & Raso, Miguel A. & Navarro, Emilio, 2019. "Direct methanol fuel cell (DMFC) and H2 proton exchange membrane fuel (PEMFC/H2) cell performance under atmospheric flight conditions of Unmanned Aerial Vehicles," Renewable Energy, Elsevier, vol. 130(C), pages 762-773.
    12. Chen, Fengxiang & Pei, Yaowang & Jiao, Jieran & Chi, Xuncheng & Hou, Zhongjun, 2023. "Energy flow and thermal voltage analysis of water-cooled PEMFC stack under normal operating conditions," Energy, Elsevier, vol. 275(C).
    13. Çalışır, Duran & Ekici, Selcuk & Midilli, Adnan & Karakoc, T. Hikmet, 2023. "Benchmarking environmental impacts of power groups used in a designed UAV: Hybrid hydrogen fuel cell system versus lithium-polymer battery drive system," Energy, Elsevier, vol. 262(PB).
    14. Fadzillah, D.M. & Rosli, M.I. & Talib, M.Z.M. & Kamarudin, S.K. & Daud, W.R.W., 2017. "Review on microstructure modelling of a gas diffusion layer for proton exchange membrane fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1001-1009.
    15. Xia, Lingchao & Ni, Meng & Xu, Qidong & Xu, Haoran & Zheng, Keqing, 2021. "Optimization of catalyst layer thickness for achieving high performance and low cost of high temperature proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 294(C).
    16. Zhong, Di & Lin, Rui & Jiang, Zhenghua & Zhu, Yike & Liu, Dengchen & Cai, Xin & Chen, Liang, 2020. "Low temperature durability and consistency analysis of proton exchange membrane fuel cell stack based on comprehensive characterizations," Applied Energy, Elsevier, vol. 264(C).
    17. Abdel-Basset, Mohamed & Mohamed, Reda & Abouhawwash, Mohamed, 2023. "On the facile and accurate determination of the highly accurate recent methods to optimize the parameters of different fuel cells: Simulations and analysis," Energy, Elsevier, vol. 272(C).
    18. Atyabi, Seyed Ali & Afshari, Ebrahim & Shakarami, Negar, 2023. "Three-dimensional multiphase modeling of the performance of an open-cathode PEM fuel cell with additional cooling channels," Energy, Elsevier, vol. 263(PA).
    19. Zhang, Qian & Lin, Rui & Técher, Ludovic & Cui, Xin, 2016. "Experimental study of variable operating parameters effects on overall PEMFC performance and spatial performance distribution," Energy, Elsevier, vol. 115(P1), pages 550-560.
    20. Wang, Ya-Xiong & Chen, Quan & Zhang, Jin & He, Hongwen, 2021. "Real-time power optimization for an air-coolant proton exchange membrane fuel cell based on active temperature control," Energy, Elsevier, vol. 220(C).
    21. Pan, Z.F. & An, L. & Wen, C.Y., 2019. "Recent advances in fuel cells based propulsion systems for unmanned aerial vehicles," Applied Energy, Elsevier, vol. 240(C), pages 473-485.
    22. Chen, Ben & Deng, Qihao & Yang, Guanghua & Zhou, Yu & Chen, Wenshang & Cai, Yonghua & Tu, Zhengkai, 2023. "Numerical study on heat transfer characteristics and performance evaluation of PEMFC based on multiphase electrochemical model coupled with cooling channel," Energy, Elsevier, vol. 285(C).
    23. Zhang, Zhuo & Wang, Qi-yao & Bai, Fan & Chen, Li & Tao, Wen-quan, 2023. "Performance simulation and key parameters in-plane distribution analysis of a commercial-size PEMFC," Energy, Elsevier, vol. 263(PC).
    24. Yu, Xianxian & Luo, Xiaobing & Tu, Zhengkai, 2023. "Development of a compact high-power density air-cooled proton exchange membrane fuel cell stack with ultrathin steel bipolar plates," Energy, Elsevier, vol. 270(C).
    25. Calili-Cankir, Fatma & Ismail, Mohammed S. & Ingham, Derek B. & Hughes, Kevin J. & Ma, Lin & Pourkashanian, Mohamed, 2022. "Air-breathing versus conventional polymer electrolyte fuel cells: A parametric numerical study," Energy, Elsevier, vol. 250(C).
    26. Wang, Bowen & Wu, Kangcheng & Xi, Fuqiang & Xuan, Jin & Xie, Xu & Wang, Xiaoyang & Jiao, Kui, 2019. "Numerical analysis of operating conditions effects on PEMFC with anode recirculation," Energy, Elsevier, vol. 173(C), pages 844-856.
    27. Dapeng Gong & Sichuan Xu & Yuan Gao, 2023. "Investigation of Water and Heat Transfer Mechanism in PEMFCs Based on a Two-Phase Non-Isothermal Model," Energies, MDPI, vol. 16(2), pages 1-20, January.
    28. Kurnia, Jundika C. & Chaedir, Benitta A. & Sasmito, Agus P. & Shamim, Tariq, 2021. "Progress on open cathode proton exchange membrane fuel cell: Performance, designs, challenges and future directions," Applied Energy, Elsevier, vol. 283(C).
    29. Özbek, Emre & Yalin, Gorkem & Ekici, Selcuk & Karakoc, T. Hikmet, 2020. "Evaluation of design methodology, limitations, and iterations of a hydrogen fuelled hybrid fuel cell mini UAV," Energy, Elsevier, vol. 213(C).
    30. Chen, Dongfang & Pei, Pucheng & Ren, Peng & Song, Xin & Wang, He & Zhang, Lu & Wang, Mingkai, 2022. "Analytical methods for the effect of anode nitrogen concentration on performance and voltage consistency of proton exchange membrane fuel cell stack," Energy, Elsevier, vol. 258(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Xianxian & Cai, Shanshan & Luo, Xiaobing & Tu, Zhengkai, 2024. "Barrel effect in an air-cooled proton exchange membrane fuel cell stack," Energy, Elsevier, vol. 286(C).
    2. Zhao, Chen & Wang, Fei & Wu, Xiaoyu, 2024. "Analysis and review on air-cooled open cathode proton exchange membrane fuel cells: Bibliometric, environmental adaptation and prospect," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    3. Chang, Huawei & Cai, Fengyang & Yu, Xianxian & Duan, Chen & Chan, Siew Hwa & Tu, Zhengkai, 2023. "Experimental study on the thermal management of an open-cathode air-cooled proton exchange membrane fuel cell stack with ultra-thin metal bipolar plates," Energy, Elsevier, vol. 263(PA).
    4. Yu, Xianxian & Liu, Yang & Tu, Zhengkai & Chan, Siew Hwa, 2023. "Endplate effect in an open-cathode proton exchange membrane fuel cell stack: Phenomenon and resolution," Renewable Energy, Elsevier, vol. 219(P1).
    5. Yu, Xianxian & Luo, Xiaobing & Tu, Zhengkai, 2023. "Development of a compact high-power density air-cooled proton exchange membrane fuel cell stack with ultrathin steel bipolar plates," Energy, Elsevier, vol. 270(C).
    6. Luo, Zongkai & Chen, Ke & Zou, Guofu & Deng, Qihao & He, Dandi & Xiong, Zhongzhuang & Chen, Wenshang & Chen, Ben, 2024. "Dynamic response characteristics and water-gas-heat synergistic transport mechanism of proton exchange membrane fuel cell during transient loading," Energy, Elsevier, vol. 302(C).
    7. Pei, Pucheng & Meng, Yining & Chen, Dongfang & Ren, Peng & Wang, Mingkai & Wang, Xizhong, 2023. "Lifetime prediction method of proton exchange membrane fuel cells based on current degradation law," Energy, Elsevier, vol. 265(C).
    8. Zhu, Kai-Qi & Ding, Quan & Zhang, Ben-Xi & Xu, Jiang-Hai & Li, Dan-Dan & Yang, Yan-Ru & Lee, Duu-Jong & Wan, Zhong-Min & Wang, Xiao-Dong, 2024. "Performance enhancement of air-cooled PEMFC stack by employing tapered oblique fin channels: Experimental study of a full stack and numerical analysis of a typical single cell," Applied Energy, Elsevier, vol. 358(C).
    9. Chen, Dongfang & Pei, Pucheng & Ren, Peng & Song, Xin & Wang, He & Zhang, Lu & Wang, Mingkai, 2022. "Analytical methods for the effect of anode nitrogen concentration on performance and voltage consistency of proton exchange membrane fuel cell stack," Energy, Elsevier, vol. 258(C).
    10. Santos, Diogo F.M. & Ferreira, Rui B. & Falcão, D.S. & Pinto, A.M.F.R., 2022. "Evaluation of a fuel cell system designed for unmanned aerial vehicles," Energy, Elsevier, vol. 253(C).
    11. Fan, Lixin & liu, Yang & Luo, Xiaobing & Tu, Zhengkai & Chan, Siew Hwa, 2023. "A novel gas supply configuration for hydrogen utilization improvement in a multi-stack air-cooling PEMFC system with dead-ended anode," Energy, Elsevier, vol. 282(C).
    12. Lin, Rui & Zhong, Di & Lan, Shunbo & Guo, Rong & Ma, Yunyang & Cai, Xin, 2021. "Experimental validation for enhancement of PEMFC cold start performance: Based on the optimization of micro porous layer," Applied Energy, Elsevier, vol. 300(C).
    13. Najmi, Aezid-Ul-Hassan & Anyanwu, Ikechukwu S. & Xie, Xu & Liu, Zhi & Jiao, Kui, 2021. "Experimental investigation and optimization of proton exchange membrane fuel cell using different flow fields," Energy, Elsevier, vol. 217(C).
    14. Zenan Shen & Shaoquan Liu & Wei Zhu & Daoyuan Ren & Qiang Xu & Yu Feng, 2024. "A Review on Key Technologies and Developments of Hydrogen Fuel Cell Multi-Rotor Drones," Energies, MDPI, vol. 17(16), pages 1-36, August.
    15. Zhao, Lei & Yuan, Hao & Xie, Jiaping & Jiang, Shangfeng & Wei, Xuezhe & Tang, Wei & Ming, Pingwen & Dai, Haifeng, 2023. "Inconsistency evaluation of vehicle-oriented fuel cell stacks based on electrochemical impedance under dynamic operating conditions," Energy, Elsevier, vol. 265(C).
    16. Yao, Jing & Wu, Zhen & Wang, Huan & Yang, Fusheng & Xuan, Jin & Xing, Lei & Ren, Jianwei & Zhang, Zaoxiao, 2022. "Design and multi-objective optimization of low-temperature proton exchange membrane fuel cells with efficient water recovery and high electrochemical performance," Applied Energy, Elsevier, vol. 324(C).
    17. Luo, Pan & Gao, Kai & Hu, Lin & Chen, Bin & Zhang, Yuanjian, 2024. "Adaptive hybrid cooling strategy to mitigate battery thermal runaway considering natural convection in phase change material," Applied Energy, Elsevier, vol. 361(C).
    18. Yang, Zirong & Jiao, Kui & Wu, Kangcheng & Shi, Weilong & Jiang, Shangfeng & Zhang, Longhai & Du, Qing, 2021. "Numerical investigations of assisted heating cold start strategies for proton exchange membrane fuel cell systems," Energy, Elsevier, vol. 222(C).
    19. Guan, Dong & Pan, Biyu & Chen, Zhen & Li, Jing & Shen, Hui & Pang, Huan, 2023. "Quantitative modeling and bio-inspired optimization the clamping load on the bipolar plate in PEMFC," Energy, Elsevier, vol. 263(PD).
    20. Zhang, Zhuo & Wang, Qi-yao & Bai, Fan & Chen, Li & Tao, Wen-quan, 2023. "Performance simulation and key parameters in-plane distribution analysis of a commercial-size PEMFC," Energy, Elsevier, vol. 263(PC).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:300:y:2024:i:c:s036054422401332x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.