IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v377y2025ipbs0306261924018671.html
   My bibliography  Save this article

An integrated experimental and numerical investigation of performance and heat-mass transport dynamics in air-cooled PEMFCs with a bamboo-shaped flow field design

Author

Listed:
  • Zhu, Kai-Qi
  • Ding, Quan
  • Zhang, Ben-Xi
  • Xu, Jiang-Hai
  • Yang, Yan-Ru
  • Lee, Duu-Jong
  • Wan, Zhong-Min
  • Wang, Xiao-Dong

Abstract

The convoluted heat and mass coupling transfer phenomena and uneven physical field distribution in air-cooled proton exchange membrane fuel cells (PEMFCs) critically affect their power density and water-thermal management. As a crucial component, the cathode flow field is vital for fuel management, heat dissipation, and water transport of air-cooled PEMFC. Refining the flow field design is a key strategy to approach the above challenges. In this study, an innovative bamboo-shaped flow field is proposed and experimentally verified in a 25 cm2 single cell, which proves its effectiveness in boosting the heat-mass transfer capacity and power density of air-cooled PEMFC. Also, it reduces fuel supply energy costs. Meanwhile, a three-dimensional multiphase numerical model is applied to explore the coupled transfer mechanisms and distribution features of liquid water, reactant, and heat under this design. Experimental results show that, at a high load of 0.65 A cm−2, the novel design increases pumping power by 17.8 % compared to the conventional parallel flow field. Despite this, it accomplishes a 5.45 % enhancement in power density and a 4.17 % rise in energy efficiency. Besides, it exhibited superior cooling efficiency and effectively mitigated localized hot spots within the cell. Numerical analysis shows that the segmental acceleration effect and the vortex regions within the bamboo-shaped design are the key factors to improve cell performance. It alleviates the issues of dehydration of the porous electrode and decreased mass transfer capability caused by high airflow velocity gradients. Further, the high heat transfer entropy region caused by the bamboo joint structure elevates the heat dissipation in porous electrodes. Simultaneously, the design also boosts the reactant distribution uniformity in the porous electrode.

Suggested Citation

  • Zhu, Kai-Qi & Ding, Quan & Zhang, Ben-Xi & Xu, Jiang-Hai & Yang, Yan-Ru & Lee, Duu-Jong & Wan, Zhong-Min & Wang, Xiao-Dong, 2025. "An integrated experimental and numerical investigation of performance and heat-mass transport dynamics in air-cooled PEMFCs with a bamboo-shaped flow field design," Applied Energy, Elsevier, vol. 377(PB).
  • Handle: RePEc:eee:appene:v:377:y:2025:i:pb:s0306261924018671
    DOI: 10.1016/j.apenergy.2024.124484
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924018671
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.124484?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:377:y:2025:i:pb:s0306261924018671. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.