IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v285y2023ics0360544223023277.html
   My bibliography  Save this article

Numerical study on heat transfer characteristics and performance evaluation of PEMFC based on multiphase electrochemical model coupled with cooling channel

Author

Listed:
  • Chen, Ben
  • Deng, Qihao
  • Yang, Guanghua
  • Zhou, Yu
  • Chen, Wenshang
  • Cai, Yonghua
  • Tu, Zhengkai

Abstract

In this study, a three-dimensional multi-phase proton exchange membrane fuel cell (PEMFC) electrochemical model coupled with a cooling channel (CC) was developed, to comprehensively analyze the heat transfer characteristics. The membrane temperature, index of uniform temperature (IUT), net power, and the Nusselt number were applied to evaluate the heat transfer performance. The results indicate that a smaller IUT value achieves better PEMFC performance at close temperatures, and the best performance is achieved with a coolant inlet temperature of 343.15 K. Although increasing the coolant flow velocity improves the cooling effect, thereby enhancing PEMFC performance. However, it inevitably leads to an increase in parasitic power, resulting in a decrease in the output power of the PEMFC system. Moreover, with the coolant temperature difference less than 6K, PEMFC shows better performance when the coolant flow direction is the same as O2. On the contrary, with the coolant temperature difference greater than 6K, the coolant flow direction should be the same as H2 to ensure good performance. In addition, with the temperature difference between the coolant inlet and outlet of 10K, 6K, and 3K, respectively, the surface Nusselt number of wavy CC is 5.46%, 8.92%, and 18.71% higher than the straight CC, respectively.

Suggested Citation

  • Chen, Ben & Deng, Qihao & Yang, Guanghua & Zhou, Yu & Chen, Wenshang & Cai, Yonghua & Tu, Zhengkai, 2023. "Numerical study on heat transfer characteristics and performance evaluation of PEMFC based on multiphase electrochemical model coupled with cooling channel," Energy, Elsevier, vol. 285(C).
  • Handle: RePEc:eee:energy:v:285:y:2023:i:c:s0360544223023277
    DOI: 10.1016/j.energy.2023.128933
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223023277
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.128933?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Atyabi, Seyed Ali & Afshari, Ebrahim & Zohravi, Elnaz & Udemu, Chinonyelum M., 2021. "Three-dimensional simulation of different flow fields of proton exchange membrane fuel cell using a multi-phase coupled model with cooling channel," Energy, Elsevier, vol. 234(C).
    2. Song, Zhen & Pan, Yue & Chen, Huicui & Zhang, Tong, 2021. "Effects of temperature on the performance of fuel cell hybrid electric vehicles: A review," Applied Energy, Elsevier, vol. 302(C).
    3. Zhou, Yu & Chen, Ben & Chen, Wenshang & Deng, Qihao & Shen, Jun & Tu, Zhengkai, 2022. "A novel opposite sinusoidal wave flow channel for performance enhancement of proton exchange membrane fuel cell," Energy, Elsevier, vol. 261(PB).
    4. Yu, Sangseok & Jung, Dohoy, 2008. "Thermal management strategy for a proton exchange membrane fuel cell system with a large active cell area," Renewable Energy, Elsevier, vol. 33(12), pages 2540-2548.
    5. Chen, Ben & Zhou, Haoran & He, Shaowen & Meng, Kai & Liu, Yang & Cai, Yonghua, 2021. "Numerical simulation on purge strategy of proton exchange membrane fuel cell with dead-ended anode," Energy, Elsevier, vol. 234(C).
    6. Rahgoshay, S.M. & Ranjbar, A.A. & Ramiar, A. & Alizadeh, E., 2017. "Thermal investigation of a PEM fuel cell with cooling flow field," Energy, Elsevier, vol. 134(C), pages 61-73.
    7. Atyabi, Seyed Ali & Afshari, Ebrahim & Shakarami, Negar, 2023. "Three-dimensional multiphase modeling of the performance of an open-cathode PEM fuel cell with additional cooling channels," Energy, Elsevier, vol. 263(PA).
    8. Chen, Ben & Liu, Qi & Zhang, Cheng & Liu, Yang & Shen, Jun & Tu, Zhengkai, 2022. "Numerical study on water transfer characteristics under joint effect of placement orientation and flow channel size for PEMFC with dead-ended anode," Energy, Elsevier, vol. 254(PB).
    9. Sasmito, Agus P. & Kurnia, Jundika C. & Mujumdar, Arun S., 2012. "Numerical evaluation of various gas and coolant channel designs for high performance liquid-cooled proton exchange membrane fuel cell stacks," Energy, Elsevier, vol. 44(1), pages 278-291.
    10. Li, Qingshan & Wang, Chenfang & Wang, Chunmei & Zhou, Taotao & Zhang, Xianwen & Zhang, Yangjun & Zhuge, Weilin & Sun, Li, 2023. "Comparison of organic coolants for boiling cooling of proton exchange membrane fuel cell," Energy, Elsevier, vol. 266(C).
    11. Cao, Tao-Feng & Lin, Hong & Chen, Li & He, Ya-Ling & Tao, Wen-Quan, 2013. "Numerical investigation of the coupled water and thermal management in PEM fuel cell," Applied Energy, Elsevier, vol. 112(C), pages 1115-1125.
    12. Qiu, Diankai & Peng, Linfa & Tang, Jiayu & Lai, Xinmin, 2020. "Numerical analysis of air-cooled proton exchange membrane fuel cells with various cathode flow channels," Energy, Elsevier, vol. 198(C).
    13. Xu, Jiamin & Zhang, Caizhi & Wan, Zhongmin & Chen, Xi & Chan, Siew Hwa & Tu, Zhengkai, 2022. "Progress and perspectives of integrated thermal management systems in PEM fuel cell vehicles: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    14. Mahdavi, Arash & Ranjbar, Ali Akbar & Gorji, Mofid & Rahimi-Esbo, Mazaher, 2018. "Numerical simulation based design for an innovative PEMFC cooling flow field with metallic bipolar plates," Applied Energy, Elsevier, vol. 228(C), pages 656-666.
    15. Kui Jiao & Jin Xuan & Qing Du & Zhiming Bao & Biao Xie & Bowen Wang & Yan Zhao & Linhao Fan & Huizhi Wang & Zhongjun Hou & Sen Huo & Nigel P. Brandon & Yan Yin & Michael D. Guiver, 2021. "Designing the next generation of proton-exchange membrane fuel cells," Nature, Nature, vol. 595(7867), pages 361-369, July.
    16. Pourrahmani, Hossein & Siavashi, Majid & Moghimi, Mahdi, 2019. "Design optimization and thermal management of the PEMFC using artificial neural networks," Energy, Elsevier, vol. 182(C), pages 443-459.
    17. Huang, Haozhong & Li, Xuan & Li, Songwei & Guo, Xiaoyu & Liu, Mingxin & Wang, Tongying & Lei, Han, 2023. "Evaluating the effect of refined flow channels in a developed biomimetic flow field on PEMFC performance," Energy, Elsevier, vol. 266(C).
    18. Meng, Kai & Zhou, Haoran & Chen, Ben & Tu, Zhengkai, 2021. "Dynamic current cycles effect on the degradation characteristic of a H2/O2 proton exchange membrane fuel cell," Energy, Elsevier, vol. 224(C).
    19. Ahmadi, Pouria & Raeesi, Mehrdad & Changizian, Sina & Teimouri, Aidin & Khoshnevisan, Alireza, 2022. "Lifecycle assessment of diesel, diesel-electric and hydrogen fuel cell transit buses with fuel cell degradation and battery aging using machine learning techniques," Energy, Elsevier, vol. 259(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Meng, Huanru & Yu, Xianxian & Luo, Xiaobing & Tu, Zhengkai, 2024. "Modelling and operation characteristics of air-cooled PEMFC with metallic bipolar plate used in unmanned aerial vehicle," Energy, Elsevier, vol. 300(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Xianxian & Cai, Shanshan & Luo, Xiaobing & Tu, Zhengkai, 2024. "Barrel effect in an air-cooled proton exchange membrane fuel cell stack," Energy, Elsevier, vol. 286(C).
    2. Zhou, Yu & Chen, Ben & Meng, Kai & Zhou, Haoran & Chen, Wenshang & Zhang, Ning & Deng, Qihao & Yang, Guanghua & Tu, Zhengkai, 2023. "Optimal design of a cathode flow field for performance enhancement of PEM fuel cell," Applied Energy, Elsevier, vol. 343(C).
    3. Sun, Yun & Lin, Yixiong & Wang, Qinglian & Yang, Chen & Yin, Wang & Wan, Zhongmin & Qiu, Ting, 2024. "Novel design and numerical investigation of a windward bend flow field for proton exchange membrane fuel cell," Energy, Elsevier, vol. 290(C).
    4. Chen, Qin & Zhang, Guobin & Zhang, Xuzhong & Sun, Cheng & Jiao, Kui & Wang, Yun, 2021. "Thermal management of polymer electrolyte membrane fuel cells: A review of cooling methods, material properties, and durability," Applied Energy, Elsevier, vol. 286(C).
    5. Zhou, Yu & Chen, Ben, 2023. "Investigation of optimization and evaluation criteria for flow field in proton exchange membrane fuel cell: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    6. Rahmani, Ebrahim & Moradi, Tofigh & Ghandehariun, Samane & Naterer, Greg F. & Ranjbar, Amirhossein, 2023. "Enhanced mass transfer and water discharge in a proton exchange membrane fuel cell with a raccoon channel flow field," Energy, Elsevier, vol. 264(C).
    7. Liu, Zhaoming & Chang, Guofeng & Yuan, Hao & Tang, Wei & Xie, Jiaping & Wei, Xuezhe & Dai, Haifeng, 2023. "Adaptive look-ahead model predictive control strategy of vehicular PEMFC thermal management," Energy, Elsevier, vol. 285(C).
    8. Zhang, Yong & He, Shirong & Jiang, Xiaohui & Wang, Zhuo & Wang, Yonggang & Gu, Meng & Yang, Xi & Zhang, Shuanyang & Cao, Jing & Fang, Haoyan & Li, Qiming, 2024. "Performance and configuration optimization of proton exchange membrane fuel cell considering dual symmetric Tesla valve flow field," Energy, Elsevier, vol. 288(C).
    9. Chen, Dongfang & Pei, Pucheng & Ren, Peng & Song, Xin & Wang, He & Zhang, Lu & Wang, Mingkai, 2022. "Analytical methods for the effect of anode nitrogen concentration on performance and voltage consistency of proton exchange membrane fuel cell stack," Energy, Elsevier, vol. 258(C).
    10. Han, Chaoling & Chen, Zhenqian, 2021. "Study on the synergism of thermal transport and electrochemical of PEMFC based on N, P co-doped graphene substrate electrode," Energy, Elsevier, vol. 214(C).
    11. Qiao, Jia Nan & Guo, Hang & Ye, Fang & Chen, Hao, 2024. "A nonlinear contraction channel design inspired by typical mathematical curves: Boosting net power and water discharge of PEM fuel cells," Applied Energy, Elsevier, vol. 357(C).
    12. Xia, Zhifeng & Chen, Huicui & Zhang, Ruirui & Weng, Qianyao & Zhang, Tong & Pei, Pucheng, 2023. "Behavior analysis of PEMFC with geometric configuration variation during multiple-step loading reduction process," Applied Energy, Elsevier, vol. 349(C).
    13. Amirfazli, Amir & Asghari, Saeed & Sarraf, Mohammad, 2018. "An investigation into the effect of manifold geometry on uniformity of temperature distribution in a PEMFC stack," Energy, Elsevier, vol. 145(C), pages 141-151.
    14. Zhou, Yu & Chen, Ben & Chen, Wenshang & Deng, Qihao & Shen, Jun & Tu, Zhengkai, 2022. "A novel opposite sinusoidal wave flow channel for performance enhancement of proton exchange membrane fuel cell," Energy, Elsevier, vol. 261(PB).
    15. Zhu, Kai-Qi & Ding, Quan & Zhang, Ben-Xi & Xu, Jiang-Hai & Li, Dan-Dan & Yang, Yan-Ru & Lee, Duu-Jong & Wan, Zhong-Min & Wang, Xiao-Dong, 2024. "Performance enhancement of air-cooled PEMFC stack by employing tapered oblique fin channels: Experimental study of a full stack and numerical analysis of a typical single cell," Applied Energy, Elsevier, vol. 358(C).
    16. Atyabi, Seyed Ali & Afshari, Ebrahim & Shakarami, Negar, 2023. "Three-dimensional multiphase modeling of the performance of an open-cathode PEM fuel cell with additional cooling channels," Energy, Elsevier, vol. 263(PA).
    17. Zhang, Yong & He, Shirong & Jiang, Xiaohui & Xiong, Mu & Ye, Yuntao & Yang, Xi, 2023. "Three-dimensional multi-phase simulation of proton exchange membrane fuel cell performance considering constriction straight channel," Energy, Elsevier, vol. 267(C).
    18. Su, Chao & Chen, Zhidong & Wu, Zexuan & Zhang, Jing & Li, Kaiyang & Hao, Junhong & Kong, Yanqiang & Zhang, Naiqiang, 2024. "Experimental and numerical study of thermal coupling on catalyst-coated membrane for proton exchange membrane water electrolyzer," Applied Energy, Elsevier, vol. 357(C).
    19. Chen, Ke & Luo, Zongkai & Zou, Guofu & He, Dandi & Xiong, Zhongzhuang & Zhou, Yu & Chen, Ben, 2024. "Multi-objective optimization of gradient gas diffusion layer structures for enhancing proton exchange membrane fuel cell performance based on response surface methodology and non-dominated sorting gen," Energy, Elsevier, vol. 288(C).
    20. Chen, Huicui & Zhang, Ruirui & Xia, Zhifeng & Weng, Qianyao & Zhang, Tong & Pei, Pucheng, 2023. "Experimental investigation on PEM fuel cell flooding mitigation under heavy loading condition," Applied Energy, Elsevier, vol. 349(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:285:y:2023:i:c:s0360544223023277. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.