IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v282y2023ics0360544223023988.html
   My bibliography  Save this article

A novel gas supply configuration for hydrogen utilization improvement in a multi-stack air-cooling PEMFC system with dead-ended anode

Author

Listed:
  • Fan, Lixin
  • liu, Yang
  • Luo, Xiaobing
  • Tu, Zhengkai
  • Chan, Siew Hwa

Abstract

The gas supply configuration would influence the reactant distribution, output performance, and durability of multi-stack proton exchange membrane fuel cells (PEMFCs). However, few researches have been conducted on optimizing the gas supply configuration. In this work, the hydrogen supply systems of two air-cooling PEMFC stacks under dead-ended anode (DEA) mode are connected in parallel and series configuration, and effects of configuration method on the performance, uniformity, and purging characteristics of these PEMFC stacks are studied. The experimental results show that series configuration provides higher power output at the expense of lower fuel utilization in comparison with parallel configuration. The main cause for the voltage degradation of PEMFCs systems under DEA mode is the accumulation of impurity gas in the outlet of PEMFC stack. Therefore, an optimized series gas configuration is proposed by adding a buffer tank and solenoid valves at the outlet of PEMFC system to purge and store the impurity gas. The optimized series configuration extends purging interval from 125 s to 800 s at the current density of 200 mA cm−2 without parasitic power. The fuel utilization has been improved from 97.51% (in series), 98.87% (in parallel) to 99.21% (in optimized series).

Suggested Citation

  • Fan, Lixin & liu, Yang & Luo, Xiaobing & Tu, Zhengkai & Chan, Siew Hwa, 2023. "A novel gas supply configuration for hydrogen utilization improvement in a multi-stack air-cooling PEMFC system with dead-ended anode," Energy, Elsevier, vol. 282(C).
  • Handle: RePEc:eee:energy:v:282:y:2023:i:c:s0360544223023988
    DOI: 10.1016/j.energy.2023.129004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223023988
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xiao, Biao & Zhao, Junjie & Fan, Lixin & Liu, Yang & Chan, Siew Hwa & Tu, Zhengkai, 2022. "Effects of moisture dehumidification on the performance and degradation of a proton exchange membrane fuel cell," Energy, Elsevier, vol. 245(C).
    2. Li, Yanju & Li, Dongxu & Ma, Zheshu & Zheng, Meng & Lu, Zhanghao & Song, Hanlin & Guo, Xinjia & Shao, Wei, 2022. "Performance analysis and optimization of a novel vehicular power system based on HT-PEMFC integrated methanol steam reforming and ORC," Energy, Elsevier, vol. 257(C).
    3. Liu, Ze & Xu, Sichuan & Zhao, Honghui & Wang, Yupeng, 2022. "Durability estimation and short-term voltage degradation forecasting of vehicle PEMFC system: Development and evaluation of machine learning models," Applied Energy, Elsevier, vol. 326(C).
    4. Zhang, Zhuo & Wang, Qi-yao & Bai, Fan & Chen, Li & Tao, Wen-quan, 2023. "Performance simulation and key parameters in-plane distribution analysis of a commercial-size PEMFC," Energy, Elsevier, vol. 263(PC).
    5. Liu, Yang & Tu, Zhengkai & Chan, Siew Hwa, 2023. "Water management and performance enhancement in a proton exchange membrane fuel cell system using optimized gas recirculation devices," Energy, Elsevier, vol. 279(C).
    6. Chu, Tiankuo & Wang, Qinpu & Xie, Meng & Wang, Baoyun & Yang, Daijun & Li, Bing & Ming, Pingwen & Zhang, Cunman, 2022. "Investigation of the reversible performance degradation mechanism of the PEMFC stack during long-term durability test," Energy, Elsevier, vol. 258(C).
    7. Bai, Xingying & Luo, Lizhong & Huang, Bi & Huang, Zhe & Jian, Qifei, 2021. "Flow characteristics analysis for multi-path hydrogen supply within proton exchange membrane fuel cell stack," Applied Energy, Elsevier, vol. 301(C).
    8. Chen, Fengxiang & Pei, Yaowang & Jiao, Jieran & Chi, Xuncheng & Hou, Zhongjun, 2023. "Energy flow and thermal voltage analysis of water-cooled PEMFC stack under normal operating conditions," Energy, Elsevier, vol. 275(C).
    9. Chen, Ben & Liu, Qi & Zhang, Cheng & Liu, Yang & Shen, Jun & Tu, Zhengkai, 2022. "Numerical study on water transfer characteristics under joint effect of placement orientation and flow channel size for PEMFC with dead-ended anode," Energy, Elsevier, vol. 254(PB).
    10. Dashti, Isar & Asghari, Saeed & Goudarzi, Mohammad & Meyer, Quentin & Mehrabani-Zeinabad, Arjomand & Brett, Dan J.L., 2019. "Optimization of the performance, operation conditions and purge rate for a dead-ended anode proton exchange membrane fuel cell using an analytical model," Energy, Elsevier, vol. 179(C), pages 173-185.
    11. Suárez, Christian & Toharias, Baltasar & Salva Aguirre, María & Chesalkin, Artem & Rosa, Felipe & Iranzo, Alfredo, 2023. "Experimental dynamic load cycling and current density measurements of different inlet/outlet configurations of a parallel-serpentine PEMFC," Energy, Elsevier, vol. 283(C).
    12. Chen, Hong & Zhan, Zhigang & Jiang, Panxing & Sun, Yahao & Liao, Liwen & Wan, Xiongbiao & Du, Qing & Chen, Xiaosong & Song, Hao & Zhu, Ruijie & Shu, Zhanhong & Li, Shang & Pan, Mu, 2022. "Whole life cycle performance degradation test and RUL prediction research of fuel cell MEA," Applied Energy, Elsevier, vol. 310(C).
    13. Zhou, Su & Zhang, Gang & Fan, Lei & Gao, Jianhua & Pei, Fenglai, 2022. "Scenario-oriented stacks allocation optimization for multi-stack fuel cell systems," Applied Energy, Elsevier, vol. 308(C).
    14. Zhang, Jikai & Wang, Changjian & Zhang, Aifeng, 2022. "Experimental study on temperature and performance of an open-cathode PEMFC stack under thermal radiation environment," Applied Energy, Elsevier, vol. 311(C).
    15. Shen, Jun & Du, Changqing & Yan, Fuwu & Chen, Ben & Tu, Zhengkai, 2022. "Experimental study on the dynamic performance of a power system with dual air-cooled PEMFC stacks," Applied Energy, Elsevier, vol. 326(C).
    16. Fan, Lixin & Tu, Zhengkai & Chan, Siew Hwa, 2022. "Technological and Engineering design of a megawatt proton exchange membrane fuel cell system," Energy, Elsevier, vol. 257(C).
    17. Cai, Yonghua & Wu, Di & Sun, Jingming & Chen, Ben, 2021. "The effect of cathode channel blockages on the enhanced mass transfer and performance of PEMFC," Energy, Elsevier, vol. 222(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu, Xianxian & Cai, Shanshan & Tu, Zhengkai & Chan, Siew Hwa, 2024. "Stack-level analysis of the performance variation in air-cooled PEMFC with Z-type anode manifold," Energy, Elsevier, vol. 305(C).
    2. Zhu, Wenchao & Li, Changzhi & Xu, Yafei & Yang, Wenlong & Xie, Changjun, 2024. "High accuracy and adaptability of PEMFC degradation interval prediction with Informer-GPR under dynamic conditions," Energy, Elsevier, vol. 307(C).
    3. Becker, F. & Cosse, C. & Gentner, C. & Schulz, D. & Liphardt, L., 2024. "Novel electrochemical and thermodynamic conditioning approaches and their evaluation for open cathode PEM-FC stacks," Applied Energy, Elsevier, vol. 363(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Xianxian & Cai, Shanshan & Luo, Xiaobing & Tu, Zhengkai, 2024. "Barrel effect in an air-cooled proton exchange membrane fuel cell stack," Energy, Elsevier, vol. 286(C).
    2. Yu, Xianxian & Luo, Xiaobing & Tu, Zhengkai, 2023. "Development of a compact high-power density air-cooled proton exchange membrane fuel cell stack with ultrathin steel bipolar plates," Energy, Elsevier, vol. 270(C).
    3. Chen, Xi & Gu, Bin & Feng, Wentao & Tan, Jingying & Kong, Xiangzhong & Li, Shi & Chen, Yiyu & Wan, Zhongmin, 2024. "Research on control strategy of PEMFC air supply system for power and efficiency improvement," Energy, Elsevier, vol. 304(C).
    4. Yu, Xianxian & Cai, Shanshan & Tu, Zhengkai & Chan, Siew Hwa, 2024. "Stack-level analysis of the performance variation in air-cooled PEMFC with Z-type anode manifold," Energy, Elsevier, vol. 305(C).
    5. Meng, Huanru & Yu, Xianxian & Luo, Xiaobing & Tu, Zhengkai, 2024. "Modelling and operation characteristics of air-cooled PEMFC with metallic bipolar plate used in unmanned aerial vehicle," Energy, Elsevier, vol. 300(C).
    6. Zhou, Yu & Chen, Ben & Chen, Wenshang & Deng, Qihao & Shen, Jun & Tu, Zhengkai, 2022. "A novel opposite sinusoidal wave flow channel for performance enhancement of proton exchange membrane fuel cell," Energy, Elsevier, vol. 261(PB).
    7. Fan, Lixin & Tu, Zhengkai & Chan, Siew Hwa, 2022. "Technological and Engineering design of a megawatt proton exchange membrane fuel cell system," Energy, Elsevier, vol. 257(C).
    8. Yu, Xianxian & Guan, Yin & Cai, Shanshan & Tu, Zhengkai & Chan, Siew Hwa, 2024. "An experimental study on the hydrogen utilization in air-cooled proton exchange membrane fuel cell stack with a novel anode outlet design," Renewable Energy, Elsevier, vol. 231(C).
    9. Becker, F. & Cosse, C. & Gentner, C. & Schulz, D. & Liphardt, L., 2024. "Novel electrochemical and thermodynamic conditioning approaches and their evaluation for open cathode PEM-FC stacks," Applied Energy, Elsevier, vol. 363(C).
    10. Chen, Ben & Zhou, Haoran & He, Shaowen & Meng, Kai & Liu, Yang & Cai, Yonghua, 2021. "Numerical simulation on purge strategy of proton exchange membrane fuel cell with dead-ended anode," Energy, Elsevier, vol. 234(C).
    11. Sun, Yun & Lin, Yixiong & Wang, Qinglian & Yang, Chen & Yin, Wang & Wan, Zhongmin & Qiu, Ting, 2024. "Novel design and numerical investigation of a windward bend flow field for proton exchange membrane fuel cell," Energy, Elsevier, vol. 290(C).
    12. Li, Changzhi & Lin, Wei & Wu, Hangyu & Li, Yang & Zhu, Wenchao & Xie, Changjun & Gooi, Hoay Beng & Zhao, Bo & Zhang, Leiqi, 2023. "Performance degradation decomposition-ensemble prediction of PEMFC using CEEMDAN and dual data-driven model," Renewable Energy, Elsevier, vol. 215(C).
    13. Weng, Fang-Bor & Dlamini, Mangaliso Menzi & Tirumalasetti, Pandu Ranga & Hwang, Jenn-Jiang, 2024. "Experimental evaluation of flow field design on open-cathode proton exchange membrane fuel cells (PEMFC) short stack consisting of three cells," Renewable Energy, Elsevier, vol. 226(C).
    14. Zhu, Kai-Qi & Ding, Quan & Zhang, Ben-Xi & Xu, Jiang-Hai & Li, Dan-Dan & Yang, Yan-Ru & Lee, Duu-Jong & Wan, Zhong-Min & Wang, Xiao-Dong, 2024. "Performance enhancement of air-cooled PEMFC stack by employing tapered oblique fin channels: Experimental study of a full stack and numerical analysis of a typical single cell," Applied Energy, Elsevier, vol. 358(C).
    15. Zhou, Yu & Chen, Ben & Meng, Kai & Zhou, Haoran & Chen, Wenshang & Zhang, Ning & Deng, Qihao & Yang, Guanghua & Tu, Zhengkai, 2023. "Optimal design of a cathode flow field for performance enhancement of PEM fuel cell," Applied Energy, Elsevier, vol. 343(C).
    16. Zhou, Yu & Chen, Ben, 2023. "Investigation of optimization and evaluation criteria for flow field in proton exchange membrane fuel cell: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    17. Zhang, Zhuo & Cai, Sai-jie & Li, Zheng-dao & Tao, Wen-Quan, 2024. "Electrical and thermal performance analysis of PEMFC with coolant flow field under steady-state condition," Energy, Elsevier, vol. 306(C).
    18. Ma, Zhenxi & Cai, Liang & Sun, Li & Zhang, Xiao & Zhang, Xiaosong, 2024. "Thermodynamics and flexibility assessment on integrated high-temperature PEMFC and double-effect absorption heating/cooling cogeneration cycle," Energy, Elsevier, vol. 290(C).
    19. Xu, Sheng & Yin, Bifeng & Li, Zekai & Dong, Fei, 2023. "A review on gas purge of proton exchange membrane fuel cells: Mechanisms, experimental approaches, numerical approaches, and optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 172(C).
    20. Tu, Xikai & Yan, Bojin & Tu, Zhengkai & Chan, Siew Hwa, 2024. "A novel development of an unmanned surface vehicle directly powered by an air-cooled proton exchange membrane fuel cell stack," Applied Energy, Elsevier, vol. 374(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:282:y:2023:i:c:s0360544223023988. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.