IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v259y2022ics0360544222018928.html
   My bibliography  Save this article

Thermodynamic analysis and LCCP evaluation of kangaroo heat pump cycle for electric vehicles

Author

Listed:
  • Mei, Zhenyuan
  • Hwang, Yunho
  • Kim, Jaeyeon

Abstract

The performance of heat pumps in electric vehicles drops significantly at low ambient temperatures due to low suction density and high-pressure ratios. To resolve this issue, we proposed the kangaroo heat pump cycle (KC). It is an enhanced flash tank-based vapor injection heat pump cycle (FT-VIC) that adds a sub-cycle before the refrigerant enters the flash tank, which increases the injection mass flow rate and leads to a higher heating capacity. Thermodynamic cycle models were developed for the basic heat pump cycle, FT-VIC, and KC. Furthermore, their heating performances, the annual energy consumption, and life cycle climate performance (LCCP) were evaluated and compared while using R-1234yf as the refrigerant. Results show that as compared to the FT-VIC, the KC increases the heating capacity by 25.7% and 20.1% and reduces the coefficient of performance by 25.8% and 18.9% when the ambient temperature is −5 °C and −15 °C, respectively. Due to the additional weight of the sub-cycle, the LCCP of KC is on average 4.6% higher than that of FT-VIC. In conclusion, the KC can provide more heating capacity in extremely cold conditions with additional energy consumption but is still more efficient than relying on the low-efficient PTC heater to meet the target heating capacity.

Suggested Citation

  • Mei, Zhenyuan & Hwang, Yunho & Kim, Jaeyeon, 2022. "Thermodynamic analysis and LCCP evaluation of kangaroo heat pump cycle for electric vehicles," Energy, Elsevier, vol. 259(C).
  • Handle: RePEc:eee:energy:v:259:y:2022:i:c:s0360544222018928
    DOI: 10.1016/j.energy.2022.124995
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222018928
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.124995?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Apostolaki-Iosifidou, Elpiniki & Codani, Paul & Kempton, Willett, 2017. "Measurement of power loss during electric vehicle charging and discharging," Energy, Elsevier, vol. 127(C), pages 730-742.
    2. Ahn, Jae Hwan & Kang, Hoon & Lee, Ho Seong & Jung, Hae Won & Baek, Changhyun & Kim, Yongchan, 2014. "Heating performance characteristics of a dual source heat pump using air and waste heat in electric vehicles," Applied Energy, Elsevier, vol. 119(C), pages 1-9.
    3. Yang, Zijun & Wang, Bowen & Jiao, Kui, 2020. "Life cycle assessment of fuel cell, electric and internal combustion engine vehicles under different fuel scenarios and driving mileages in China," Energy, Elsevier, vol. 198(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Nan & Lu, Yiji & Ouderji, Zahra Hajabdollahi & Yu, Zhibin, 2023. "Review of heat pump integrated energy systems for future zero-emission vehicles," Energy, Elsevier, vol. 273(C).
    2. Cheng, Jia-Hao & Cao, Xiang & Shao, Liang-Liang & Zhang, Chun-Lu, 2023. "Performance evaluation of a novel heat pump system for drying with EVI-compressor driven precooling and reheating," Energy, Elsevier, vol. 278(PB).
    3. Jia, Fan & Yin, Xiang & Cao, Feng & Fang, Jianmin & Wang, Anci & Wang, Xixi & Yang, Lichen, 2024. "A novel control method for the automotive CO2 heat pumps under inappropriate refrigerant charge conditions," Energy, Elsevier, vol. 286(C).
    4. Kwon, Soonbum & Lee, Dongchan & Chung, Jun Yeob & Maeng, Heegyu & Kim, Yongchan, 2024. "Performance comparison of a direct heat pump using R1234yf and indirect heat pumps using R1234yf and R290 designed for cabin heating of electric vehicles," Energy, Elsevier, vol. 297(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jung, Jongho & Jeon, Yongseok & Cho, Wonhee & Kim, Yongchan, 2020. "Effects of injection-port angle and internal heat exchanger length in vapor injection heat pumps for electric vehicles," Energy, Elsevier, vol. 193(C).
    2. Ghotge, Rishabh & van Wijk, Ad & Lukszo, Zofia, 2021. "Off-grid solar charging of electric vehicles at long-term parking locations," Energy, Elsevier, vol. 227(C).
    3. Desreveaux, A. & Bouscayrol, A. & Trigui, R. & Hittinger, E. & Castex, E. & Sirbu, G.M., 2023. "Accurate energy consumption for comparison of climate change impact of thermal and electric vehicles," Energy, Elsevier, vol. 268(C).
    4. Lane, Blake & Kinnon, Michael Mac & Shaffer, Brendan & Samuelsen, Scott, 2022. "Deployment planning tool for environmentally sensitive heavy-duty vehicles and fueling infrastructure," Energy Policy, Elsevier, vol. 171(C).
    5. Robin Smit & Eckard Helmers & Michael Schwingshackl & Martin Opetnik & Daniel Kennedy, 2024. "Greenhouse Gas Emissions Performance of Electric, Hydrogen and Fossil-Fuelled Freight Trucks with Uncertainty Estimates Using a Probabilistic Life-Cycle Assessment (pLCA)," Sustainability, MDPI, vol. 16(2), pages 1-38, January.
    6. Liu, Yajie & Dong, Feng & Wang, Yulong & Li, Jingyun & Qin, Chang, 2023. "Assessment of the energy-saving and environment effects of China's gasoline vehicle withdrawal under the impact of geopolitical risks," Resources Policy, Elsevier, vol. 86(PB).
    7. Wang, Hua & Zhao, De & Meng, Qiang & Ong, Ghim Ping & Lee, Der-Horng, 2020. "Network-level energy consumption estimation for electric vehicles considering vehicle and user heterogeneity," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 30-46.
    8. Tang, Qingsong & Yang, Yang & Luo, Chang & Yang, Zhong & Fu, Chunyun, 2022. "A novel electro-hydraulic compound braking system coordinated control strategy for a four-wheel-drive pure electric vehicle driven by dual motors," Energy, Elsevier, vol. 241(C).
    9. Zhang, Zhenying & Wang, Jiayu & Feng, Xu & Chang, Li & Chen, Yanhua & Wang, Xingguo, 2018. "The solutions to electric vehicle air conditioning systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 443-463.
    10. Liang, Yanan & Kleijn, René & Tukker, Arnold & van der Voet, Ester, 2022. "Material requirements for low-carbon energy technologies: A quantitative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    11. Zhang, Nan & Lu, Yiji & Kadam, Sambhaji & Yu, Zhibin, 2023. "A fuel cell range extender integrating with heat pump for cabin heat and power generation," Applied Energy, Elsevier, vol. 348(C).
    12. Lu, Qiang & Zhang, Bo & Yang, Shichun & Peng, Zhaoxia, 2022. "Life cycle assessment on energy efficiency of hydrogen fuel cell vehicle in China," Energy, Elsevier, vol. 257(C).
    13. Sovacool, Benjamin K. & Kester, Johannes & Noel, Lance & Zarazua de Rubens, Gerardo, 2020. "Actors, business models, and innovation activity systems for vehicle-to-grid (V2G) technology: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    14. Subhojit Dawn & Gummadi Srinivasa Rao & M. L. N. Vital & K. Dhananjay Rao & Faisal Alsaif & Mohammed H. Alsharif, 2023. "Profit Extension of a Wind-Integrated Competitive Power System by Vehicle-to-Grid Integration and UPFC Placement," Energies, MDPI, vol. 16(18), pages 1-24, September.
    15. Wang, Yue & Das, Ridoy & Putrus, Ghanim & Kotter, Richard, 2020. "Economic evaluation of photovoltaic and energy storage technologies for future domestic energy systems – A case study of the UK," Energy, Elsevier, vol. 203(C).
    16. Alexandre F. M. Correia & Pedro Moura & Aníbal T. de Almeida, 2022. "Technical and Economic Assessment of Battery Storage and Vehicle-to-Grid Systems in Building Microgrids," Energies, MDPI, vol. 15(23), pages 1-23, November.
    17. Zou, Wenke & Sun, Yongjun & Gao, Dian-ce & Zhang, Xu & Liu, Junyao, 2023. "A review on integration of surging plug-in electric vehicles charging in energy-flexible buildings: Impacts analysis, collaborative management technologies, and future perspective," Applied Energy, Elsevier, vol. 331(C).
    18. Mayank Jha & Frede Blaabjerg & Mohammed Ali Khan & Varaha Satya Bharath Kurukuru & Ahteshamul Haque, 2019. "Intelligent Control of Converter for Electric Vehicles Charging Station," Energies, MDPI, vol. 12(12), pages 1-25, June.
    19. George Barjoveanu & Florenta Dinita & Carmen Teodosiu, 2022. "Aging Passenger Car Fleet Structure, Dynamics, and Environmental Performance Evaluation at the Regional Level by Life Cycle Assessment," Sustainability, MDPI, vol. 14(14), pages 1-18, July.
    20. Yang, Zirong & Jiao, Kui & Wu, Kangcheng & Shi, Weilong & Jiang, Shangfeng & Zhang, Longhai & Du, Qing, 2021. "Numerical investigations of assisted heating cold start strategies for proton exchange membrane fuel cell systems," Energy, Elsevier, vol. 222(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:259:y:2022:i:c:s0360544222018928. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.