IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i4p802-d1587040.html
   My bibliography  Save this article

Experimental Study on R290 Performance of an Integrated Thermal Management System for Electric Vehicle

Author

Listed:
  • Zihao Luo

    (College of Energy Engineering, Zhejiang University, Hangzhou 310012, China
    Provincial Key Laboratory of New Energy Vehicles Thermal Management, Longquan 323700, China)

  • Shusheng Xiong

    (College of Energy Engineering, Zhejiang University, Hangzhou 310012, China
    Provincial Key Laboratory of New Energy Vehicles Thermal Management, Longquan 323700, China
    Longquan Industrial Innovation Research Institute, Longquan 323700, China)

  • Min Wen

    (College of Energy Engineering, Zhejiang University, Hangzhou 310012, China
    Anhui Jianghuai Automobile Group Corp, Ltd., Hefei 230041, China)

  • Jiahao Zhao

    (College of Energy Engineering, Zhejiang University, Hangzhou 310012, China)

  • Yifei Zhang

    (Polytechnic Institute, Zhejiang University, Hangzhou 310015, China)

Abstract

Integrated thermal management system (ITMS) technology for electric vehicles (EV) has become a major industry research direction. However, R290 refrigerants are still not applied on a large scale in EVs. Therefore, we developed a suitable thermal management system for R290 in this study. This architecture adapts an unusual indirect design, which can coordinate the heat between the air conditioner, battery pack, and electric motor. We focused on heat pump air conditioning systems for EV thermal management; thus, we carried out the performance analysis of R290 under the cooling and heating conditions of our ITMS through an experimental approach. The current study explores various aspects affecting the performance of heat-pump air conditioners: refrigerant charge, electronic expansion valve (EXV) opening, compressor speed, and performance between R290 and R134a under different external temperatures. We aim to improve cooling and heating efficiencies. Among these parameters, the EXV opening and compressor speed have the greatest impact on the performance of the ITMS, as evidenced by the optimal EXV opening and lower compressor speed to maximize the coefficient of performance (COP) and increase the heat transfer rate. In addition, this study has shown that, compared to an ITMS equipped with R134a, R290 has a smaller refrigerant charge, better heat transfer rate and COP under heating conditions, and similar performance under cooling conditions.

Suggested Citation

  • Zihao Luo & Shusheng Xiong & Min Wen & Jiahao Zhao & Yifei Zhang, 2025. "Experimental Study on R290 Performance of an Integrated Thermal Management System for Electric Vehicle," Energies, MDPI, vol. 18(4), pages 1-21, February.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:4:p:802-:d:1587040
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/4/802/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/4/802/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Nan & Lu, Yiji & Ouderji, Zahra Hajabdollahi & Yu, Zhibin, 2023. "Review of heat pump integrated energy systems for future zero-emission vehicles," Energy, Elsevier, vol. 273(C).
    2. Hongzeng Ji & Jinchen Pei & Jingyang Cai & Chen Ding & Fen Guo & Yichun Wang, 2023. "Review of Recent Advances in Transcritical CO 2 Heat Pump and Refrigeration Cycles and Their Development in the Vehicle Field," Energies, MDPI, vol. 16(10), pages 1-21, May.
    3. Ahn, Jae Hwan & Lee, Joo Seong & Baek, Changhyun & Kim, Yongchan, 2016. "Performance improvement of a dehumidifying heat pump using an additional waste heat source in electric vehicles with low occupancy," Energy, Elsevier, vol. 115(P1), pages 67-75.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jung, Jongho & Jeon, Yongseok & Cho, Wonhee & Kim, Yongchan, 2020. "Effects of injection-port angle and internal heat exchanger length in vapor injection heat pumps for electric vehicles," Energy, Elsevier, vol. 193(C).
    2. Sun, X.Y. & Dai, Y.J. & Ge, T.S. & Zhao, Y. & Wang, R.Z., 2017. "Comparison of performance characteristics of desiccant coated air-water heat exchanger with conventional air-water heat exchanger – Experimental and analytical investigation," Energy, Elsevier, vol. 137(C), pages 399-411.
    3. Zhang, Zhenying & Wang, Jiayu & Feng, Xu & Chang, Li & Chen, Yanhua & Wang, Xingguo, 2018. "The solutions to electric vehicle air conditioning systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 443-463.
    4. Wu, Jiafeng & Li, Lin & Yin, Zichao & Li, Zhe & Wang, Tong & Tan, Yunfeng & Tan, Dapeng, 2024. "Mass transfer mechanism of multiphase shear flows and interphase optimization solving method," Energy, Elsevier, vol. 292(C).
    5. Ko, Jaedeok & Jeong, Ji Hwan, 2024. "Status and challenges of vapor compression air conditioning and heat pump systems for electric vehicles," Applied Energy, Elsevier, vol. 375(C).
    6. Chen, K. & Zheng, X. & Wang, S.N., 2022. "Investigation on activated carbon-sodium polyacrylate coated aluminum sheets for desiccant coated heat exchanger," Energy, Elsevier, vol. 245(C).
    7. Zhang, Nan & Lu, Yiji & Ouderji, Zahra Hajabdollahi & Yu, Zhibin, 2023. "Review of heat pump integrated energy systems for future zero-emission vehicles," Energy, Elsevier, vol. 273(C).
    8. Pang, Liping & Luo, Kun & Yuan, Yanping & Mao, Xiaodong & Fang, Yufeng, 2020. "Thermal performance of helicopter air conditioning system with lube oil source (LOS) heat pump," Energy, Elsevier, vol. 190(C).
    9. Marco Gambini & Michele Manno & Michela Vellini, 2024. "Energy and Exergy Analysis of Transcritical CO 2 Cycles for Heat Pump Applications," Sustainability, MDPI, vol. 16(17), pages 1-26, August.
    10. Jiang, Qinhua & Zhang, Ning & Yueshuai He, Brian & Lee, Changju & Ma, Jiaqi, 2024. "Large-scale public charging demand prediction with a scenario- and activity-based approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 179(C).
    11. Han, Xinxin & Zou, Huiming & Wu, Jiang & Tian, Changqing & Tang, Mingsheng & Huang, Guangyan, 2020. "Investigation on the heating performance of the heat pump with waste heat recovery for the electric bus," Renewable Energy, Elsevier, vol. 152(C), pages 835-848.
    12. Luo, Lulin & Lu, Lidi & Shen, Xuelian & Chen, Jinhua & Pan, Yang & Wang, Yuchen & Luo, Qing, 2023. "Energy, exergy and economic analysis of an integrated ground source heat pump and anaerobic digestion system for Co-generation of heating, cooling and biogas," Energy, Elsevier, vol. 282(C).
    13. Jiang, Ruicheng & Qian, Gao & Li, Zhi & Yu, Xiaoli & Lu, Yiji, 2024. "Progress and challenges of latent thermal energy storage through external field-dependent heat transfer enhancement methods," Energy, Elsevier, vol. 304(C).
    14. Yu, Mingzhe & Yang, Fubin & Zhang, Hongguang & Yan, Yinlian & Ping, Xu & Pan, Yachao & Xing, Chengda & Yang, Anren, 2024. "Thermoeconomic performance of supercritical carbon dioxide Brayton cycle systems for CNG engine waste heat recovery," Energy, Elsevier, vol. 289(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:4:p:802-:d:1587040. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.