IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v375y2024ics0306261924014788.html
   My bibliography  Save this article

Status and challenges of vapor compression air conditioning and heat pump systems for electric vehicles

Author

Listed:
  • Ko, Jaedeok
  • Jeong, Ji Hwan

Abstract

The heat pump air conditioning (HPAC) systems in electric vehicles (EVs) consume a significant amount of electric power to manage the thermal requirements of various subsystems, particularly in hot and cold weather conditions. A comprehensive review of previous studies was conducted to assess the current status of technical challenges concerning HPAC systems for EVs, with a specific focus on vapor compression cycle systems. The review specifically addresses technical issues related to heat pump systems operating with refrigerants R-1234yf, R-290, and R-744. Furthermore, challenges in HPAC operation are comprehensively discussed, including frost formation, defrosting methods, start-up procedures, load management (pull-down or heat-up), lubricant oil effects, refrigerant charge imbalance, virtual prototyping, limitations of artificial neural network models, and control strategies. It is noted that the subcritical system using R-1234yf requires improvements for heating operations, while the transcritical system using R-744 needs enhancements in cooling performance. Additionally, the review suggests that further attention and exploration are needed in hybrid systems and multi-objective comprehensive control strategies for the vehicle thermal management system. The review provides valuable insights into the current state and future research directions in HPAC systems for EVs.

Suggested Citation

  • Ko, Jaedeok & Jeong, Ji Hwan, 2024. "Status and challenges of vapor compression air conditioning and heat pump systems for electric vehicles," Applied Energy, Elsevier, vol. 375(C).
  • Handle: RePEc:eee:appene:v:375:y:2024:i:c:s0306261924014788
    DOI: 10.1016/j.apenergy.2024.124095
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924014788
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.124095?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kim, Soohwan & Jeong, Hoyoung & Lee, Hoseong, 2021. "Cold-start performance investigation of fuel cell electric vehicles with heat pump-assisted thermal management systems," Energy, Elsevier, vol. 232(C).
    2. Jung, Jongho & Jeon, Yongseok & Cho, Wonhee & Kim, Yongchan, 2020. "Effects of injection-port angle and internal heat exchanger length in vapor injection heat pumps for electric vehicles," Energy, Elsevier, vol. 193(C).
    3. Wang, Chi-Chuan & Hafner, Armin & Kuo, Cheng-Shu & Hsieh, Wen-Der, 2012. "An overview of the effect of lubricant on the heat transfer performance on conventional refrigerants and natural refrigerant R-744," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5071-5086.
    4. Sim, Jaehoon & Lee, Hyoin & Jeong, Ji Hwan, 2021. "Optimal design of variable-path heat exchanger for energy efficiency improvement of air-source heat pump system," Applied Energy, Elsevier, vol. 290(C).
    5. Jia, Fan & Yin, Xiang & Cao, Feng & Fang, Jianmin & Wang, Anci & Wang, Xixi & Yang, Lichen, 2024. "A novel control method for the automotive CO2 heat pumps under inappropriate refrigerant charge conditions," Energy, Elsevier, vol. 286(C).
    6. Li, Gang & Eisele, Magnus & Lee, Hoseong & Hwang, Yunho & Radermacher, Reinhard, 2014. "Experimental investigation of energy and exergy performance of secondary loop automotive air-conditioning systems using low-GWP (global warming potential) refrigerants," Energy, Elsevier, vol. 68(C), pages 819-831.
    7. Wang, Dandong & Zhang, Zhenyu & Yu, Binbin & Wang, Xinnan & Shi, Junye & Chen, Jiangping, 2019. "Experimental research on charge determination and accumulator behavior in trans-critical CO2 mobile air-conditioning system," Energy, Elsevier, vol. 183(C), pages 106-115.
    8. Ko, Younghwan & Park, Sangkyoung & Jin, Simon & Kim, Byungsoon & Jeong, Ji Hwan, 2013. "The selection of volume ratio of two-stage rotary compressor and its effects on air-to-water heat pump with flash tank cycle," Applied Energy, Elsevier, vol. 104(C), pages 187-196.
    9. Dominik Dvorak & Daniele Basciotti & Imre Gellai, 2020. "Demand-Based Control Design for Efficient Heat Pump Operation of Electric Vehicles," Energies, MDPI, vol. 13(20), pages 1-18, October.
    10. Huang, Dong & Li, Quanxu & Yuan, Xiuling, 2009. "Comparison between hot-gas bypass defrosting and reverse-cycle defrosting methods on an air-to-water heat pump," Applied Energy, Elsevier, vol. 86(9), pages 1697-1703, September.
    11. Yunren Sui & Zengguang Sui & Guangda Liang & Wei Wu, 2023. "Superhydrophobic Microchannel Heat Exchanger for Electric Vehicle Heat Pump Performance Enhancement," Sustainability, MDPI, vol. 15(18), pages 1-20, September.
    12. Qinghong Peng & Qungui Du, 2016. "Progress in Heat Pump Air Conditioning Systems for Electric Vehicles—A Review," Energies, MDPI, vol. 9(4), pages 1-17, March.
    13. Atam, Ercan, 2017. "Current software barriers to advanced model-based control design for energy-efficient buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1031-1040.
    14. Zilio, Claudio & Brown, J. Steven & Schiochet, Giovanni & Cavallini, Alberto, 2011. "The refrigerant R1234yf in air conditioning systems," Energy, Elsevier, vol. 36(10), pages 6110-6120.
    15. Zhang, Nan & Lu, Yiji & Ouderji, Zahra Hajabdollahi & Yu, Zhibin, 2023. "Review of heat pump integrated energy systems for future zero-emission vehicles," Energy, Elsevier, vol. 273(C).
    16. Qin, Fei & Zhang, Guiying & Xue, Qingfeng & Zou, Huiming & Tian, Changqing, 2017. "Experimental investigation and theoretical analysis of heat pump systems with two different injection portholes compressors for electric vehicles," Applied Energy, Elsevier, vol. 185(P2), pages 2085-2093.
    17. Maeng, Heegyu & Kim, Jinyoung & Kwon, Soonbum & Kim, Yongchan, 2023. "Energy and environmental performance of vapor injection heat pumps using R134a, R152a, and R1234yf under various injection conditions," Energy, Elsevier, vol. 280(C).
    18. Mei, Zhenyuan & Hwang, Yunho & Kim, Jaeyeon, 2022. "Thermodynamic analysis and LCCP evaluation of kangaroo heat pump cycle for electric vehicles," Energy, Elsevier, vol. 259(C).
    19. Kang Li & Jun Yu & Mingkang Liu & Dan Xu & Lin Su & Yidong Fang, 2020. "A Study of Optimal Refrigerant Charge Amount Determination for Air-Conditioning Heat Pump System in Electric Vehicles," Energies, MDPI, vol. 13(3), pages 1-18, February.
    20. Ivan Cvok & Igor Ratković & Joško Deur, 2020. "Optimisation of Control Input Allocation Maps for Electric Vehicle Heat Pump-based Cabin Heating Systems," Energies, MDPI, vol. 13(19), pages 1-23, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Nan & Lu, Yiji & Ouderji, Zahra Hajabdollahi & Yu, Zhibin, 2023. "Review of heat pump integrated energy systems for future zero-emission vehicles," Energy, Elsevier, vol. 273(C).
    2. Jiang, Ziqi & Tian, Yafen & Li, Kang & Zhao, Zhaorui & Liu, Ni & Zhang, Hua, 2024. "Research on refrigerant charge determination under different compressor speed and its effects on the performance of transcritical CO2 air-conditioning heat pump system in electric vehicle," Energy, Elsevier, vol. 296(C).
    3. Zhang, Zhenying & Wang, Jiayu & Feng, Xu & Chang, Li & Chen, Yanhua & Wang, Xingguo, 2018. "The solutions to electric vehicle air conditioning systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 443-463.
    4. Zhang, Nan & Lu, Yiji & Kadam, Sambhaji & Yu, Zhibin, 2023. "A fuel cell range extender integrating with heat pump for cabin heat and power generation," Applied Energy, Elsevier, vol. 348(C).
    5. Ivan Cvok & Igor Ratković & Joško Deur, 2021. "Multi-Objective Optimisation-Based Design of an Electric Vehicle Cabin Heating Control System for Improved Thermal Comfort and Driving Range," Energies, MDPI, vol. 14(4), pages 1-24, February.
    6. Mota-Babiloni, Adrián & Belman-Flores, J.M. & Makhnatch, Pavel & Navarro-Esbrí, Joaquín & Barroso-Maldonado, J.M., 2018. "Experimental exergy analysis of R513A to replace R134a in a small capacity refrigeration system," Energy, Elsevier, vol. 162(C), pages 99-110.
    7. Jia, Fan & Yin, Xiang & Cao, Feng & Fang, Jianmin & Wang, Anci & Wang, Xixi & Yang, Lichen, 2024. "A novel control method for the automotive CO2 heat pumps under inappropriate refrigerant charge conditions," Energy, Elsevier, vol. 286(C).
    8. Kwon, Soonbum & Lee, Dongchan & Chung, Jun Yeob & Maeng, Heegyu & Kim, Yongchan, 2024. "Performance comparison of a direct heat pump using R1234yf and indirect heat pumps using R1234yf and R290 designed for cabin heating of electric vehicles," Energy, Elsevier, vol. 297(C).
    9. Yulong Song & Hongsheng Xie & Mengying Yang & Xiangyu Wei & Feng Cao & Xiang Yin, 2023. "A Comprehensive Assessment of the Refrigerant Charging Amount on the Global Performance of a Transcritical CO 2 -Based Bus Air Conditioning and Heat Pump System," Energies, MDPI, vol. 16(6), pages 1-21, March.
    10. Jung, Jongho & Jeon, Yongseok & Cho, Wonhee & Kim, Yongchan, 2020. "Effects of injection-port angle and internal heat exchanger length in vapor injection heat pumps for electric vehicles," Energy, Elsevier, vol. 193(C).
    11. Sheng, Wei & Liu, Pengpeng & Dang, Chaobin & Liu, Guixin, 2017. "Review of restraint frost method on cold surface," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 806-813.
    12. Yubo Zhang & Bin Peng & Pengcheng Zhang & Jian Sun & Zhixiang Liao, 2024. "Key Technologies and Application of Electric Scroll Compressors: A Review," Energies, MDPI, vol. 17(7), pages 1-18, April.
    13. Yuan, Zhipeng & Liu, Qi & Luo, Baojun & Li, Zhenming & Fu, Jianqin & Chen, Jingwei, 2018. "Thermodynamic analysis of different oil flooded compression enhanced vapor injection cycles," Energy, Elsevier, vol. 154(C), pages 553-560.
    14. Kasaeian, Alibakhsh & Hosseini, Seyed Mohsen & Sheikhpour, Mojgan & Mahian, Omid & Yan, Wei-Mon & Wongwises, Somchai, 2018. "Applications of eco-friendly refrigerants and nanorefrigerants: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 91-99.
    15. Sun, Fangtian & Fu, Lin & Sun, Jian & Zhang, Shigang, 2014. "A new ejector heat exchanger based on an ejector heat pump and a water-to-water heat exchanger," Applied Energy, Elsevier, vol. 121(C), pages 245-251.
    16. Alexander Wahl & Christoph Wellmann & Björn Krautwig & Patrick Manns & Bicheng Chen & Christof Schernus & Jakob Andert, 2022. "Efficiency Increase through Model Predictive Thermal Control of Electric Vehicle Powertrains," Energies, MDPI, vol. 15(4), pages 1-21, February.
    17. Cheng, Jia-Hao & Cao, Xiang & Shao, Liang-Liang & Zhang, Chun-Lu, 2023. "Performance evaluation of a novel heat pump system for drying with EVI-compressor driven precooling and reheating," Energy, Elsevier, vol. 278(PB).
    18. Ivan Cvok & Igor Ratković & Joško Deur, 2020. "Optimisation of Control Input Allocation Maps for Electric Vehicle Heat Pump-based Cabin Heating Systems," Energies, MDPI, vol. 13(19), pages 1-23, October.
    19. Barouch Giechaskiel & Dimitrios Komnos & Georgios Fontaras, 2021. "Impacts of Extreme Ambient Temperatures and Road Gradient on Energy Consumption and CO 2 Emissions of a Euro 6d-Temp Gasoline Vehicle," Energies, MDPI, vol. 14(19), pages 1-20, September.
    20. Zhang, Shaoliang & Liu, Shuli & Xu, Zhiqi & Chen, Hongkuan & Wang, Jihong & Li, Yongliang & Yar Khan, Sheher & Kumar, Mahesh, 2024. "Effect of the irradiation intensity on the photo-thermal conversion performance of composite phase change materials: An experimental approach," Renewable Energy, Elsevier, vol. 225(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:375:y:2024:i:c:s0306261924014788. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.