IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v283y2023ics0360544223024477.html
   My bibliography  Save this article

Analytical temperature estimation process of the air supply system of the proton exchange membrane fuel cell stack in fuel cell electric vehicles

Author

Listed:
  • Kim, Dong-Min
  • Chin, Jun-Woo
  • Kim, Jae-Hyun
  • Lim, Myung-Seop

Abstract

The air supply system of the proton exchange membrane fuel cell stack in fuel cell electric vehicles should be included as one of the components of the balance of plant. However, the air supply system consists of a centrifugal air compressor, driven by an ultra-high-speed motor. Therefore, there occurs a large amount of thermal energy from losses and the temperature of the air supply system should be considered. Accordingly, this study suggests the temperature estimation process for an air supply system based on a lumped parameter thermal network (LPTN). First, performance modeling is introduced using not only the empirical approach but also electromagnetic finite element analysis (FEA). Subsequently, thermal modeling based on the LPTN is presented. For this procedure, optimization techniques, screening, and surrogate model-based optimization are used. Finally, the results of LPTN construction are investigated. Furthermore, an additional experiment is conducted, and the result of this study is verified.

Suggested Citation

  • Kim, Dong-Min & Chin, Jun-Woo & Kim, Jae-Hyun & Lim, Myung-Seop, 2023. "Analytical temperature estimation process of the air supply system of the proton exchange membrane fuel cell stack in fuel cell electric vehicles," Energy, Elsevier, vol. 283(C).
  • Handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223024477
    DOI: 10.1016/j.energy.2023.129053
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223024477
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129053?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kim, Dong-Min & Lee, Soo-Gyung & Kim, Dae-Kee & Park, Min-Ro & Lim, Myung-Seop, 2022. "Sizing and optimization process of hybrid electric propulsion system for heavy-duty vehicle based on Gaussian process modeling considering traction motor characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    2. Kim, Soohwan & Jeong, Hoyoung & Lee, Hoseong, 2021. "Cold-start performance investigation of fuel cell electric vehicles with heat pump-assisted thermal management systems," Energy, Elsevier, vol. 232(C).
    3. Ronald L. Wasserstein & Nicole A. Lazar, 2016. "The ASA's Statement on p -Values: Context, Process, and Purpose," The American Statistician, Taylor & Francis Journals, vol. 70(2), pages 129-133, May.
    4. Li, Kunpeng & Wang, Lan, 2023. "Optimal electric vehicle subsidy and pricing decisions with consideration of EV anxiety and EV preference in green and non-green consumers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 170(C).
    5. Chen, Huicui & Liu, Zhao & Ye, Xichen & Yi, Liu & Xu, Sichen & Zhang, Tong, 2022. "Air flow and pressure optimization for air supply in proton exchange membrane fuel cell system," Energy, Elsevier, vol. 238(PC).
    6. Xu, Jiamin & Zhang, Caizhi & Fan, Ruijia & Bao, Huanhuan & Wang, Yi & Huang, Shulong & Chin, Cheng Siong & Li, Congxin, 2020. "Modelling and control of vehicle integrated thermal management system of PEM fuel cell vehicle," Energy, Elsevier, vol. 199(C).
    7. Wang, Chuang & Liu, Mingkun & Wang, Bingqi & Xing, Ziwen & Shu, Yue, 2022. "Research on power consumption distribution characteristics of a water-lubricated twin-screw air compressor for fuel cell applications," Energy, Elsevier, vol. 256(C).
    8. Han, Jaeyoung & Yu, Sangseok & Yi, Sun, 2017. "Adaptive control for robust air flow management in an automotive fuel cell system," Applied Energy, Elsevier, vol. 190(C), pages 73-83.
    9. Wang, Jun & Han, Yi & Pan, Shiyang & Wang, Zengli & Cui, Dong & Geng, Maofei, 2022. "Design and development of an oil-free double-scroll air compressor used in a PEM fuel cell system," Renewable Energy, Elsevier, vol. 199(C), pages 840-851.
    10. Kwon, Kihan & Lee, Jung-Hwan & Lim, Sang-Kil, 2023. "Optimization of multi-speed transmission for electric vehicles based on electrical and mechanical efficiency analysis," Applied Energy, Elsevier, vol. 342(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hu, Haowen & Ou, Kai & Yuan, Wei-Wei, 2023. "Fused multi-model predictive control with adaptive compensation for proton exchange membrane fuel cell air supply system," Energy, Elsevier, vol. 284(C).
    2. Vu, Hoang Nghia & Truong Le Tri, Dat & Nguyen, Huu Linh & Kim, Younghyeon & Yu, Sangseok, 2023. "Multifunctional bypass valve for water management and surge protection in a proton-exchange membrane fuel cell supply-air system," Energy, Elsevier, vol. 278(C).
    3. Li, Yuehua & Pei, Pucheng & Ma, Ze & Ren, Peng & Huang, Hao, 2020. "Analysis of air compression, progress of compressor and control for optimal energy efficiency in proton exchange membrane fuel cell," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    4. Zhang, Nan & Lu, Yiji & Ouderji, Zahra Hajabdollahi & Yu, Zhibin, 2023. "Review of heat pump integrated energy systems for future zero-emission vehicles," Energy, Elsevier, vol. 273(C).
    5. Bizon, Nicu, 2019. "Real-time optimization strategies of Fuel Cell Hybrid Power Systems based on Load-following control: A new strategy, and a comparative study of topologies and fuel economy obtained," Applied Energy, Elsevier, vol. 241(C), pages 444-460.
    6. Jyotirmoy Sarkar, 2018. "Will P†Value Triumph over Abuses and Attacks?," Biostatistics and Biometrics Open Access Journal, Juniper Publishers Inc., vol. 7(4), pages 66-71, July.
    7. Olivian Chiver & Ioan Radu Sugar & Liviu Neamt, 2024. "Study on the Selection of Electric Motor/Engine on the Performance of Hybrid Vehicles," Energies, MDPI, vol. 17(14), pages 1-14, July.
    8. Chatelain, Jean-Bernard & Ralf, Kirsten, 2018. "Publish and Perish: Creative Destruction and Macroeconomic Theory," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 46(2), pages 65-101.
    9. Segurado, Pedro & Gutiérrez-Cánovas, Cayetano & Ferreira, Teresa & Branco, Paulo, 2022. "Stressor gradient coverage affects interaction identification," Ecological Modelling, Elsevier, vol. 472(C).
    10. Uwe Hassler & Marc‐Oliver Pohle, 2022. "Unlucky Number 13? Manipulating Evidence Subject to Snooping," International Statistical Review, International Statistical Institute, vol. 90(2), pages 397-410, August.
    11. Kim, Jae H., 2017. "Stock returns and investors' mood: Good day sunshine or spurious correlation?," International Review of Financial Analysis, Elsevier, vol. 52(C), pages 94-103.
    12. Gergely Ganics & Atsushi Inoue & Barbara Rossi, 2021. "Confidence Intervals for Bias and Size Distortion in IV and Local Projections-IV Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(1), pages 307-324, January.
    13. Bizon, Nicu, 2019. "Hybrid power sources (HPSs) for space applications: Analysis of PEMFC/Battery/SMES HPS under unknown load containing pulses," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 14-37.
    14. Hirschauer, Norbert & Grüner, Sven & Mußhoff, Oliver & Becker, Claudia & Jantsch, Antje, 2020. "Can p-values be meaningfully interpreted without random sampling?," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 14, pages 71-91.
    15. Wang, Chenfang & Li, Qingshan & Wang, Chunmei & Zhang, Yangjun & Zhuge, Weilin, 2021. "Thermodynamic analysis of a hydrogen fuel cell waste heat recovery system based on a zeotropic organic Rankine cycle," Energy, Elsevier, vol. 232(C).
    16. Lu Zhang & Yongfeng Liu & Pucheng Pei & Xintong Liu & Long Wang & Yuan Wan, 2022. "Variation Characteristic Analysis of Water Content at the Flow Channel of Proton Exchange Membrane Fuel Cell," Energies, MDPI, vol. 15(9), pages 1-20, April.
    17. Abel Rubio & Wilton Agila & Leandro González & Jonathan Aviles-Cedeno, 2023. "Distributed Intelligence in Autonomous PEM Fuel Cell Control," Energies, MDPI, vol. 16(12), pages 1-25, June.
    18. Ma, Yan & Hu, Fuyuan & Hu, Yunfeng, 2023. "Energy efficiency improvement of intelligent fuel cell/battery hybrid vehicles through an integrated management strategy," Energy, Elsevier, vol. 263(PE).
    19. Oliver Schilke & Sheen S. Levine & Olenka Kacperczyk & Lynne G. Zucker, 2019. "Call for Papers-Special Issue on Experiments in Organizational Theory," Organization Science, INFORMS, vol. 30(1), pages 232-234, February.
    20. Hou, Junbo & Yang, Min & Ke, Changchun & Zhang, Junliang, 2020. "Control logics and strategies for air supply in PEM fuel cell engines," Applied Energy, Elsevier, vol. 269(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223024477. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.