IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v349y2023ics0306261923010267.html
   My bibliography  Save this article

Novel design of thermo-electric air conditioning system integrated with PV panel for electric vehicles: Performance evaluation

Author

Listed:
  • Ahmed, Hossam A.
  • Megahed, Tamer F.
  • Mori, Shinsuke
  • Nada, Sameh
  • Hassan, Hamdy

Abstract

Traditional air conditioning may be inappropriate for electric vehicles due to its moving parts noise besides using chlorofluorocarbons that harm the environment. In addition, it consumes a significant portion of the stored energy in batteries, reducing the vehicle's driving range. So, in this paper, a novel design of thermo-electric cooling (TEC) system coupled with a photovoltaic (PV) panel replacing the vehicle roof is studied. This system consists of a sandwich of PV panel outside the vehicle and TEC inside with a heat sink system integrated between them. The air temperature variation in the cabin during the daytime is predicted by solving a complete mathematical transient thermal model of the whole system before and after mounting the cooling system. The air streams through the vehicle moving are exploited to improve the TEC and PV system performance. The system performance is investigated for different cases during the day with and without including the PV output power and for the vehicle parks inside or outside. The results indicate that, for each scenario, the number of used TEC modules influences the system performance where the best number varies between 128 and 98. Coupling the PV panel with the TEC system reduces the daily required energy from batteries by about 19%. Running the TEC system during parking from 8 to 10 am decreases the cabin air temperature from 47.5 to 34°C while the input power declines by about 45%, which reduces the interior temperature to 25°C in 10 min (transition time). The contribution of the PV panel based on the studied conditions can increase the range of the vehicle by 10.4 km/day and about 160kWh/year energy saving. The reduction in the input power during transition time reaches 27.8% when the vehicle speed increases from 30 to 60 km/h, while this ratio declines to 10.8% as the vehicle speed rises from 60 to 90 km/h. During vehicle moving, powering the TEC system by the PV panel only can prevent the cabin temperature from rising over 40°C, whereas during parking, there is an optimum fan air velocity that gives the maximum reduction of the cabin temperature.

Suggested Citation

  • Ahmed, Hossam A. & Megahed, Tamer F. & Mori, Shinsuke & Nada, Sameh & Hassan, Hamdy, 2023. "Novel design of thermo-electric air conditioning system integrated with PV panel for electric vehicles: Performance evaluation," Applied Energy, Elsevier, vol. 349(C).
  • Handle: RePEc:eee:appene:v:349:y:2023:i:c:s0306261923010267
    DOI: 10.1016/j.apenergy.2023.121662
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923010267
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.121662?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. He, Wei & Zhou, Jinzhi & Hou, Jingxin & Chen, Chi & Ji, Jie, 2013. "Theoretical and experimental investigation on a thermoelectric cooling and heating system driven by solar," Applied Energy, Elsevier, vol. 107(C), pages 89-97.
    2. Hannan, M.A. & Azidin, F.A. & Mohamed, A., 2014. "Hybrid electric vehicles and their challenges: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 135-150.
    3. Zhang, Qi & He, Suoying & Song, Tianyi & Wang, Mingwei & Liu, Zhilan & Zhao, Jifang & Gao, Qi & Huang, Xiang & Han, Kuihua & Qi, Jianhui & Gao, Ming & Shi, Yuetao, 2023. "Modeling of a PV system by a back-mounted spray cooling section for performance improvement," Applied Energy, Elsevier, vol. 332(C).
    4. Pourkiaei, Seyed Mohsen & Ahmadi, Mohammad Hossein & Sadeghzadeh, Milad & Moosavi, Soroush & Pourfayaz, Fathollah & Chen, Lingen & Pour Yazdi, Mohammad Arab & Kumar, Ravinder, 2019. "Thermoelectric cooler and thermoelectric generator devices: A review of present and potential applications, modeling and materials," Energy, Elsevier, vol. 186(C).
    5. Hamdy, Mohamed & Askalany, Ahmed A. & Harby, K. & Kora, Nader, 2015. "An overview on adsorption cooling systems powered by waste heat from internal combustion engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1223-1234.
    6. Wang, L.W. & Jiang, L. & Gao, J. & Gao, P. & Wang, R.Z., 2017. "Analysis of resorption working pairs for air conditioners of electric vehicles," Applied Energy, Elsevier, vol. 207(C), pages 594-603.
    7. Diaz-Londono, Cesar & Enescu, Diana & Ruiz, Fredy & Mazza, Andrea, 2020. "Experimental modeling and aggregation strategy for thermoelectric refrigeration units as flexible loads," Applied Energy, Elsevier, vol. 272(C).
    8. Sadighi Dizaji, Hamed & Jafarmadar, Samad & Khalilarya, Shahram & Moosavi, Amin, 2016. "An exhaustive experimental study of a novel air-water based thermoelectric cooling unit," Applied Energy, Elsevier, vol. 181(C), pages 357-366.
    9. Duan, Mengfan & Sun, Hongli & Lin, Borong & Wu, Yifan, 2021. "Evaluation on the applicability of thermoelectric air cooling systems for buildings with thermoelectric material optimization," Energy, Elsevier, vol. 221(C).
    10. Ibañez-Puy, María & Bermejo-Busto, Javier & Martín-Gómez, César & Vidaurre-Arbizu, Marina & Sacristán-Fernández, José Antonio, 2017. "Thermoelectric cooling heating unit performance under real conditions," Applied Energy, Elsevier, vol. 200(C), pages 303-314.
    11. Shirazi, Ali & Taylor, Robert A. & White, Stephen D. & Morrison, Graham L., 2016. "Transient simulation and parametric study of solar-assisted heating and cooling absorption systems: An energetic, economic and environmental (3E) assessment," Renewable Energy, Elsevier, vol. 86(C), pages 955-971.
    12. Sharafian, Amir & Bahrami, Majid, 2015. "Critical analysis of thermodynamic cycle modeling of adsorption cooling systems for light-duty vehicle air conditioning applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 857-869.
    13. Zhang, Zhenying & Wang, Jiayu & Feng, Xu & Chang, Li & Chen, Yanhua & Wang, Xingguo, 2018. "The solutions to electric vehicle air conditioning systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 443-463.
    14. Liu, Haowen & Zhao, Xudong & Li, Guiqiang & Ma, Xiaoli, 2022. "Investigation of a novel separately-configured micro-thermoelectric cooler to enabling extend application scope," Applied Energy, Elsevier, vol. 306(PB).
    15. Said, M.A. & Hassan, Hamdy, 2018. "Parametric study on the effect of using cold thermal storage energy of phase change material on the performance of air-conditioning unit," Applied Energy, Elsevier, vol. 230(C), pages 1380-1402.
    16. Qi, Zhaogang, 2014. "Advances on air conditioning and heat pump system in electric vehicles – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 754-764.
    17. Teo, H.G. & Lee, P.S. & Hawlader, M.N.A., 2012. "An active cooling system for photovoltaic modules," Applied Energy, Elsevier, vol. 90(1), pages 309-315.
    18. Srivastava, Raj Shekhar & Kumar, Anuruddh & Thakur, Harishchandra & Vaish, Rahul, 2022. "Solar assisted thermoelectric cooling/heating system for vehicle cabin during parking: A numerical study," Renewable Energy, Elsevier, vol. 181(C), pages 384-403.
    19. Lundgaard, Christian & Sigmund, Ole, 2019. "Design of segmented thermoelectric Peltier coolers by topology optimization," Applied Energy, Elsevier, vol. 239(C), pages 1003-1013.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Jinwen & Han, Jitian & Duan, Lian & Zhu, Wanchao & Liang, Wenxing & Mou, Chaoyang, 2024. "Investigation on a novel hybrid system based on radiative sky cooling and split thermoelectric cooler driven by photovoltaic cell," Renewable Energy, Elsevier, vol. 229(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Duan, Mengfan & Sun, Hongli & Lin, Borong & Wu, Yifan, 2021. "Evaluation on the applicability of thermoelectric air cooling systems for buildings with thermoelectric material optimization," Energy, Elsevier, vol. 221(C).
    2. Afshari, Faraz & Mandev, Emre & Muratçobanoğlu, Burak & Yetim, Ali Fatih & Ceviz, Mehmet Akif, 2023. "Experimental and numerical study on a novel fanless air-to-air solar thermoelectric refrigerator equipped with boosted heat exchanger," Renewable Energy, Elsevier, vol. 207(C), pages 253-265.
    3. Zhao, Dongliang & Yin, Xiaobo & Xu, Jingtao & Tan, Gang & Yang, Ronggui, 2020. "Radiative sky cooling-assisted thermoelectric cooling system for building applications," Energy, Elsevier, vol. 190(C).
    4. Zhang, Zhenying & Wang, Jiayu & Feng, Xu & Chang, Li & Chen, Yanhua & Wang, Xingguo, 2018. "The solutions to electric vehicle air conditioning systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 443-463.
    5. Ivan Cvok & Igor Ratković & Joško Deur, 2020. "Optimisation of Control Input Allocation Maps for Electric Vehicle Heat Pump-based Cabin Heating Systems," Energies, MDPI, vol. 13(19), pages 1-23, October.
    6. Chen, Lingen & Lorenzini, Giulio, 2023. "Heating load, COP and exergetic efficiency optimizations for TEG-TEH combined thermoelectric device with Thomson effect and external heat transfer," Energy, Elsevier, vol. 270(C).
    7. Liu, Haowen & Li, Guiqiang & Zhao, Xudong & Ma, Xiaoli & Shen, Chao, 2023. "Investigation of the impact of the thermoelectric geometry on the cooling performance and thermal—mechanic characteristics in a thermoelectric cooler," Energy, Elsevier, vol. 267(C).
    8. Sørensen, Åse Lekang & Ludvigsen, Bjørn & Andresen, Inger, 2023. "Grid-connected cabin preheating of Electric Vehicles in cold climates – A non-flexible share of the EV energy use," Applied Energy, Elsevier, vol. 341(C).
    9. Ramakrishnan Iyer & Aritra Ghosh, 2023. "Investigation of Integrated and Non-Integrated Thermoelectric Systems for Buildings—A Review," Energies, MDPI, vol. 16(19), pages 1-17, October.
    10. Ivan Cvok & Igor Ratković & Joško Deur, 2021. "Multi-Objective Optimisation-Based Design of an Electric Vehicle Cabin Heating Control System for Improved Thermal Comfort and Driving Range," Energies, MDPI, vol. 14(4), pages 1-24, February.
    11. Cai, Yang & Hong, Bing-Hua & Wu, Wei-Xiong & Wang, Wei-Wei & Zhao, Fu-Yun, 2022. "Active cooling performance of a PCM-based thermoelectric device: Dynamic characteristics and parametric investigations," Energy, Elsevier, vol. 254(PB).
    12. Zhang, Nan & Lu, Yiji & Ouderji, Zahra Hajabdollahi & Yu, Zhibin, 2023. "Review of heat pump integrated energy systems for future zero-emission vehicles," Energy, Elsevier, vol. 273(C).
    13. Xu, Jiamin & Zhang, Caizhi & Wan, Zhongmin & Chen, Xi & Chan, Siew Hwa & Tu, Zhengkai, 2022. "Progress and perspectives of integrated thermal management systems in PEM fuel cell vehicles: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    14. Li, Yan, 2022. "A concentrated solar spectrum splitting photovoltaic cell-thermoelectric refrigerators combined system: Definition, combined system properties and performance evaluation," Energy, Elsevier, vol. 238(PC).
    15. Sun, Dongfang & Shen, Limei & Sun, Miao & Yao, Yu & Chen, Huanxin & Jin, Shiping, 2018. "An effective method of evaluating the device-level thermophysical properties and performance of micro-thermoelectric coolers," Applied Energy, Elsevier, vol. 219(C), pages 93-104.
    16. Ibrahim, Amier & Jiang, Fangming, 2021. "The electric vehicle energy management: An overview of the energy system and related modeling and simulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    17. Kashif Irshad & Abdulmohsen Almalawi & Asif Irshad Khan & Md Mottahir Alam & Md. Hasan Zahir & Amjad Ali, 2020. "An IoT-Based Thermoelectric Air Management Framework for Smart Building Applications: A Case Study for Tropical Climate," Sustainability, MDPI, vol. 12(4), pages 1-18, February.
    18. Xie, Peng & Jin, Lu & Qiao, Geng & Lin, Cheng & Barreneche, Camila & Ding, Yulong, 2022. "Thermal energy storage for electric vehicles at low temperatures: Concepts, systems, devices and materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    19. Song, Yulong & Wang, Haidan & Ma, Yuan & Yin, Xiang & Cao, Feng, 2022. "Energetic, economic, environmental investigation of carbon dioxide as the refrigeration alternative in new energy bus/railway vehicles’ air conditioning systems," Applied Energy, Elsevier, vol. 305(C).
    20. Weckerle, C. & Nasir, M. & Hegner, R. & Bürger, I. & Linder, M., 2020. "A metal hydride air-conditioning system for fuel cell vehicles – Functional demonstration," Applied Energy, Elsevier, vol. 259(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:349:y:2023:i:c:s0306261923010267. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.