IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i3p657-d316224.html
   My bibliography  Save this article

A Study of Optimal Refrigerant Charge Amount Determination for Air-Conditioning Heat Pump System in Electric Vehicles

Author

Listed:
  • Kang Li

    (School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
    Key Laboratory of Multiphase Flow and Heat Transfer in Shanghai Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China)

  • Jun Yu

    (School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China)

  • Mingkang Liu

    (School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China)

  • Dan Xu

    (School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China)

  • Lin Su

    (School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
    Key Laboratory of Multiphase Flow and Heat Transfer in Shanghai Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China)

  • Yidong Fang

    (School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
    Key Laboratory of Multiphase Flow and Heat Transfer in Shanghai Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China)

Abstract

With regard to concerns about an electric vehicle’s driving range extension in a cold climate, an air-conditioning heat pump (ACHP) shows considerable advantage over thermoelectric heaters for battery energy conservation. The effect of refrigerant charge amount for cooling and heating performance of the ACHP system is significant. The optimal charge, realizing the optimal system performance, is usually determined by experiments of cooling and heating performance. In this paper, the optimal charge determination process based on a newly designed ACHP applied in electric vehicles was introduced. Relationships of characteristics with charge in two modes were investigated by experimental and theoretical methods. Firstly, the performance of the ACHP system was respectively investigated at different charge amounts in cooling and heating operating conditions according to key parameters of system cycles. Secondly, the intersection platforms of subcooling and superheat variation curves with refrigerant charge amount were obtained for determining optimal charge amount of the system further by comprehensive analysis. Finally, the theoretical calculation of charge with three instructive and classical void friction correlation models were applied for better comparisons. It was found that charge amount calculated by the Hughmark model proved to be most consistent with the comprehensive experimental results.

Suggested Citation

  • Kang Li & Jun Yu & Mingkang Liu & Dan Xu & Lin Su & Yidong Fang, 2020. "A Study of Optimal Refrigerant Charge Amount Determination for Air-Conditioning Heat Pump System in Electric Vehicles," Energies, MDPI, vol. 13(3), pages 1-18, February.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:3:p:657-:d:316224
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/3/657/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/3/657/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dickes, Rémi & Dumont, Olivier & Guillaume, Ludovic & Quoilin, Sylvain & Lemort, Vincent, 2018. "Charge-sensitive modelling of organic Rankine cycle power systems for off-design performance simulation," Applied Energy, Elsevier, vol. 212(C), pages 1262-1281.
    2. Zhang, Zhenying & Wang, Jiayu & Feng, Xu & Chang, Li & Chen, Yanhua & Wang, Xingguo, 2018. "The solutions to electric vehicle air conditioning systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 443-463.
    3. Choi, J.M & Kim, Y.C, 2002. "The effects of improper refrigerant charge on the performance of a heat pump with an electronic expansion valve and capillary tube," Energy, Elsevier, vol. 27(4), pages 391-404.
    4. Chae, Jung-Hoon & Choi, Jong Min, 2015. "Evaluation of the impacts of high stage refrigerant charge on cascade heat pump performance," Renewable Energy, Elsevier, vol. 79(C), pages 66-71.
    5. Wang, Dandong & Zhang, Zhenyu & Yu, Binbin & Wang, Xinnan & Shi, Junye & Chen, Jiangping, 2019. "Experimental research on charge determination and accumulator behavior in trans-critical CO2 mobile air-conditioning system," Energy, Elsevier, vol. 183(C), pages 106-115.
    6. Qi, Zhaogang, 2014. "Advances on air conditioning and heat pump system in electric vehicles – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 754-764.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yulong Song & Hongsheng Xie & Mengying Yang & Xiangyu Wei & Feng Cao & Xiang Yin, 2023. "A Comprehensive Assessment of the Refrigerant Charging Amount on the Global Performance of a Transcritical CO 2 -Based Bus Air Conditioning and Heat Pump System," Energies, MDPI, vol. 16(6), pages 1-21, March.
    2. Jiang, Ziqi & Tian, Yafen & Li, Kang & Zhao, Zhaorui & Liu, Ni & Zhang, Hua, 2024. "Research on refrigerant charge determination under different compressor speed and its effects on the performance of transcritical CO2 air-conditioning heat pump system in electric vehicle," Energy, Elsevier, vol. 296(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ivan Cvok & Igor Ratković & Joško Deur, 2020. "Optimisation of Control Input Allocation Maps for Electric Vehicle Heat Pump-based Cabin Heating Systems," Energies, MDPI, vol. 13(19), pages 1-23, October.
    2. Ahmed, Hossam A. & Megahed, Tamer F. & Mori, Shinsuke & Nada, Sameh & Hassan, Hamdy, 2023. "Novel design of thermo-electric air conditioning system integrated with PV panel for electric vehicles: Performance evaluation," Applied Energy, Elsevier, vol. 349(C).
    3. Sørensen, Åse Lekang & Ludvigsen, Bjørn & Andresen, Inger, 2023. "Grid-connected cabin preheating of Electric Vehicles in cold climates – A non-flexible share of the EV energy use," Applied Energy, Elsevier, vol. 341(C).
    4. Ivan Cvok & Igor Ratković & Joško Deur, 2021. "Multi-Objective Optimisation-Based Design of an Electric Vehicle Cabin Heating Control System for Improved Thermal Comfort and Driving Range," Energies, MDPI, vol. 14(4), pages 1-24, February.
    5. Zhang, Nan & Lu, Yiji & Ouderji, Zahra Hajabdollahi & Yu, Zhibin, 2023. "Review of heat pump integrated energy systems for future zero-emission vehicles," Energy, Elsevier, vol. 273(C).
    6. Xu, Jiamin & Zhang, Caizhi & Wan, Zhongmin & Chen, Xi & Chan, Siew Hwa & Tu, Zhengkai, 2022. "Progress and perspectives of integrated thermal management systems in PEM fuel cell vehicles: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    7. Ibrahim, Amier & Jiang, Fangming, 2021. "The electric vehicle energy management: An overview of the energy system and related modeling and simulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    8. Song, Yulong & Wang, Haidan & Ma, Yuan & Yin, Xiang & Cao, Feng, 2022. "Energetic, economic, environmental investigation of carbon dioxide as the refrigeration alternative in new energy bus/railway vehicles’ air conditioning systems," Applied Energy, Elsevier, vol. 305(C).
    9. Jung, Jongho & Jeon, Yongseok & Cho, Wonhee & Kim, Yongchan, 2020. "Effects of injection-port angle and internal heat exchanger length in vapor injection heat pumps for electric vehicles," Energy, Elsevier, vol. 193(C).
    10. Wu, Jiabin & Li, Qihang & Bie, Yiming & Zhou, Wei, 2024. "Location-routing optimization problem for electric vehicle charging stations in an uncertain transportation network: An adaptive co-evolutionary clustering algorithm," Energy, Elsevier, vol. 304(C).
    11. Srivastava, Raj Shekhar & Kumar, Anuruddh & Thakur, Harishchandra & Vaish, Rahul, 2022. "Solar assisted thermoelectric cooling/heating system for vehicle cabin during parking: A numerical study," Renewable Energy, Elsevier, vol. 181(C), pages 384-403.
    12. Zhang, Zhaoli & Alelyani, Sami M. & Zhang, Nan & Zeng, Chao & Yuan, Yanping & Phelan, Patrick E., 2018. "Thermodynamic analysis of a novel sodium hydroxide-water solution absorption refrigeration, heating and power system for low-temperature heat sources," Applied Energy, Elsevier, vol. 222(C), pages 1-12.
    13. Zhang, Zhenying & Wang, Jiayu & Feng, Xu & Chang, Li & Chen, Yanhua & Wang, Xingguo, 2018. "The solutions to electric vehicle air conditioning systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 443-463.
    14. Kim, Soohwan & Jeong, Hoyoung & Lee, Hoseong, 2021. "Cold-start performance investigation of fuel cell electric vehicles with heat pump-assisted thermal management systems," Energy, Elsevier, vol. 232(C).
    15. Tong-Bou Chang & Jer-Jia Sheu & Jhong-Wei Huang, 2020. "High-Efficiency HVAC System with Defog/Dehumidification Function for Electric Vehicles," Energies, MDPI, vol. 14(1), pages 1-12, December.
    16. Oh, Jinwoo & Jeong, Hoyoung & Lee, Hoseong, 2021. "Experimental and numerical analysis on low-temperature off-design organic Rankine cycle in perspective of mass conservation," Energy, Elsevier, vol. 234(C).
    17. Fabio Fatigati & Diego Vittorini & Yaxiong Wang & Jian Song & Christos N. Markides & Roberto Cipollone, 2020. "Design and Operational Control Strategy for Optimum Off-Design Performance of an ORC Plant for Low-Grade Waste Heat Recovery," Energies, MDPI, vol. 13(21), pages 1-23, November.
    18. Hu, Dong & Huang, Chao & Yin, Guodong & Li, Yangmin & Huang, Yue & Huang, Hailong & Wu, Jingda & Li, Wenfei & Xie, Hui, 2024. "A transfer-based reinforcement learning collaborative energy management strategy for extended-range electric buses with cabin temperature comfort consideration," Energy, Elsevier, vol. 290(C).
    19. Qinghong Peng & Qungui Du, 2016. "Progress in Heat Pump Air Conditioning Systems for Electric Vehicles—A Review," Energies, MDPI, vol. 9(4), pages 1-17, March.
    20. Zhao, Weiwei & Zhang, Tongtong & Kildahl, Harriet & Ding, Yulong, 2022. "Mobile energy recovery and storage: Multiple energy-powered EVs and refuelling stations," Energy, Elsevier, vol. 257(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:3:p:657-:d:316224. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.