IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v239y2019icp1142-1153.html
   My bibliography  Save this article

Experimental energetic analysis of CO2/R41 blends in automobile air-conditioning and heat pump systems

Author

Listed:
  • Yu, Binbin
  • Yang, Jingye
  • Wang, Dandong
  • Shi, Junye
  • Guo, Zhikai
  • Chen, Jiangping

Abstract

This study primarily aims to evaluate the cooling and heating characteristics and provide a performance comparison of CO2, R41, and several CO2/R41 blends for applications in automobile air-conditioning and heat pump systems. Experiments were conducted to reveal the effects of the refrigerant charge, compositions, ambient temperatures, and compressor speeds among the trans-critical and subcritical cycles. The performance merits of the environmental friendliness, energy efficiency, and safety of using CO2/R41 blends are emphasized. The results demonstrate that, at an optimum charge amount, the coefficient of performance of pure CO2 in the heating and cooling modes can be improved up to a maximum of 14.5% and 25.7%, respectively, by increasing the R41 mass fraction. The heating and cooling capacities were both decreased with an increasing R41 mass fraction, as the system mass flow rates decreased owing to the reduction in suction density. The overall system operation pressure, gas cooler outlet temperature, and high- and low-side pressure drops in both the heating and cooling modes were reduced significantly when the mass fraction of R41 increased from 0% to 100%. Furthermore, the effect of the CO2 mass fraction on the flammability of CO2/R41 blends was studied to discuss the advantages of its safety application. Finally, based on the experimental data, a correlation of the optimum high-side pressure for the trans-critical CO2/R41 cycle was developed, showing a deviation of ±5% from the data.

Suggested Citation

  • Yu, Binbin & Yang, Jingye & Wang, Dandong & Shi, Junye & Guo, Zhikai & Chen, Jiangping, 2019. "Experimental energetic analysis of CO2/R41 blends in automobile air-conditioning and heat pump systems," Applied Energy, Elsevier, vol. 239(C), pages 1142-1153.
  • Handle: RePEc:eee:appene:v:239:y:2019:i:c:p:1142-1153
    DOI: 10.1016/j.apenergy.2019.02.028
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919303265
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.02.028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dandong Wang & Binbin Yu & Junye Shi & Jiangping Chen, 2018. "Experimental and Theoretical Study on the Cooling Performance of a CO 2 Mobile Air Conditioning System," Energies, MDPI, vol. 11(8), pages 1-13, July.
    2. Habka, Muhsen & Ajib, Salman, 2015. "Evaluation of mixtures performances in Organic Rankine Cycle when utilizing the geothermal water with and without cogeneration," Applied Energy, Elsevier, vol. 154(C), pages 567-576.
    3. Dai, Baomin & Li, Minxia & Ma, Yitai, 2014. "Thermodynamic analysis of carbon dioxide blends with low GWP (global warming potential) working fluids-based transcritical Rankine cycles for low-grade heat energy recovery," Energy, Elsevier, vol. 64(C), pages 942-952.
    4. Wang, Jiangfeng & Zhao, Pan & Niu, Xiaoqiang & Dai, Yiping, 2012. "Parametric analysis of a new combined cooling, heating and power system with transcritical CO2 driven by solar energy," Applied Energy, Elsevier, vol. 94(C), pages 58-64.
    5. Abas, Naeem & Kalair, Ali Raza & Khan, Nasrullah & Haider, Aun & Saleem, Zahid & Saleem, Muhammad Shoaib, 2018. "Natural and synthetic refrigerants, global warming: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 557-569.
    6. Park, Ki-Jung & Jung, Dongsoo, 2009. "Performance of heat pumps charged with R170/R290 mixture," Applied Energy, Elsevier, vol. 86(12), pages 2598-2603, December.
    7. Hu, Bin & Li, Yaoyu & Cao, Feng & Xing, Ziwen, 2015. "Extremum seeking control of COP optimization for air-source transcritical CO2 heat pump water heater system," Applied Energy, Elsevier, vol. 147(C), pages 361-372.
    8. Tao, Y.B. & He, Y.L. & Tao, W.Q., 2010. "Exergetic analysis of transcritical CO2 residential air-conditioning system based on experimental data," Applied Energy, Elsevier, vol. 87(10), pages 3065-3072, October.
    9. Wang, Q. & Li, D.H. & Wang, J.P. & Sun, T.F. & Han, X.H. & Chen, G.M., 2013. "Numerical investigations on the performance of a single-stage auto-cascade refrigerator operating with two vapor–liquid separators and environmentally benign binary refrigerants," Applied Energy, Elsevier, vol. 112(C), pages 949-955.
    10. Sun, Zhili & Liang, Youcai & Liu, Shengchun & Ji, Weichuan & Zang, Runqing & Liang, Rongzhen & Guo, Zhikai, 2016. "Comparative analysis of thermodynamic performance of a cascade refrigeration system for refrigerant couples R41/R404A and R23/R404A," Applied Energy, Elsevier, vol. 184(C), pages 19-25.
    11. Aprea, Ciro & Maiorino, Angelo, 2009. "Heat rejection pressure optimization for a carbon dioxide split system: An experimental study," Applied Energy, Elsevier, vol. 86(11), pages 2373-2380, November.
    12. Zhang, Zhenying & Wang, Jiayu & Feng, Xu & Chang, Li & Chen, Yanhua & Wang, Xingguo, 2018. "The solutions to electric vehicle air conditioning systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 443-463.
    13. Zhao, Li & Bao, Junjiang, 2014. "Thermodynamic analysis of organic Rankine cycle using zeotropic mixtures," Applied Energy, Elsevier, vol. 130(C), pages 748-756.
    14. Zhang, Jing & Zhang, Hong-Hu & He, Ya-Ling & Tao, Wen-Quan, 2016. "A comprehensive review on advances and applications of industrial heat pumps based on the practices in China," Applied Energy, Elsevier, vol. 178(C), pages 800-825.
    15. Llopis, Rodrigo & Sánchez, Daniel & Sanz-Kock, Carlos & Cabello, Ramón & Torrella, Enrique, 2015. "Energy and environmental comparison of two-stage solutions for commercial refrigeration at low temperature: Fluids and systems," Applied Energy, Elsevier, vol. 138(C), pages 133-142.
    16. Zhang, Shengjun & Wang, Huaixin & Guo, Tao, 2010. "Experimental investigation of moderately high temperature water source heat pump with non-azeotropic refrigerant mixtures," Applied Energy, Elsevier, vol. 87(5), pages 1554-1561, May.
    17. Dai, Baomin & Liu, Shengchun & Zhu, Kai & Sun, Zhili & Ma, Yitai, 2017. "Thermodynamic performance evaluation of transcritical carbon dioxide refrigeration cycle integrated with thermoelectric subcooler and expander," Energy, Elsevier, vol. 122(C), pages 787-800.
    18. Chesi, Andrea & Esposito, Fabio & Ferrara, Giovanni & Ferrari, Lorenzo, 2014. "Experimental analysis of R744 parallel compression cycle," Applied Energy, Elsevier, vol. 135(C), pages 274-285.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Nan & Lu, Yiji & Ouderji, Zahra Hajabdollahi & Yu, Zhibin, 2023. "Review of heat pump integrated energy systems for future zero-emission vehicles," Energy, Elsevier, vol. 273(C).
    2. Yu, Binbin & Yang, Jingye & Wang, Dandong & Shi, Junye & Chen, Jiangping, 2019. "An updated review of recent advances on modified technologies in transcritical CO2 refrigeration cycle," Energy, Elsevier, vol. 189(C).
    3. Yu, Aofang & Xing, Lingli & Su, Wen & Liu, Pei, 2023. "State-of-the-art review on the CO2 combined power and cooling system: System configuration, modeling and performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    4. Dong, Yixiu & Yan, Hongzhi & Wang, Ruzhu, 2024. "Significant thermal upgrade via cascade high temperature heat pump with low GWP working fluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PA).
    5. Jia, Fan & Yin, Xiang & Cao, Feng & Fang, Jianmin & Wang, Anci & Wang, Xixi & Yang, Lichen, 2024. "A novel control method for the automotive CO2 heat pumps under inappropriate refrigerant charge conditions," Energy, Elsevier, vol. 286(C).
    6. Zhang, Nan & Lu, Yiji & Kadam, Sambhaji & Yu, Zhibin, 2023. "A fuel cell range extender integrating with heat pump for cabin heat and power generation," Applied Energy, Elsevier, vol. 348(C).
    7. Zendehboudi, Alireza, 2024. "Optimal discharge pressure and performance characteristics of a transcritical CO2 heat pump system with a tri-partite gas cooler for combined space and water heating," Renewable Energy, Elsevier, vol. 226(C).
    8. Yikai Wang & Yifan He & Yulong Song & Xiang Yin & Feng Cao & Xiaolin Wang, 2021. "Energy and Exergy Analysis of the Air Source Transcritical CO 2 Heat Pump Water Heater Using CO 2 -Based Mixture as Working Fluid," Energies, MDPI, vol. 14(15), pages 1-18, July.
    9. Hongzeng Ji & Jinchen Pei & Jingyang Cai & Chen Ding & Fen Guo & Yichun Wang, 2023. "Review of Recent Advances in Transcritical CO 2 Heat Pump and Refrigeration Cycles and Their Development in the Vehicle Field," Energies, MDPI, vol. 16(10), pages 1-21, May.
    10. Dan Dan & Yihang Zhao & Mingshan Wei & Xuehui Wang, 2023. "Review of Thermal Management Technology for Electric Vehicles," Energies, MDPI, vol. 16(12), pages 1-38, June.
    11. Yu, Binbin & Long, Junan & Zhang, Yingjing & Ouyang, Hongsheng & Wang, Dandong & Shi, Junye & Chen, Jiangping, 2024. "Life cycle climate performance evaluation (LCCP) of electric vehicle heat pumps using low-GWP refrigerants towards China's carbon neutrality," Applied Energy, Elsevier, vol. 353(PA).
    12. Song, Yulong & Wang, Haidan & Ma, Yuan & Yin, Xiang & Cao, Feng, 2022. "Energetic, economic, environmental investigation of carbon dioxide as the refrigeration alternative in new energy bus/railway vehicles’ air conditioning systems," Applied Energy, Elsevier, vol. 305(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Song, Yulong & Wang, Haidan & Ma, Yuan & Yin, Xiang & Cao, Feng, 2022. "Energetic, economic, environmental investigation of carbon dioxide as the refrigeration alternative in new energy bus/railway vehicles’ air conditioning systems," Applied Energy, Elsevier, vol. 305(C).
    2. Yu, Binbin & Yang, Jingye & Wang, Dandong & Shi, Junye & Chen, Jiangping, 2019. "An updated review of recent advances on modified technologies in transcritical CO2 refrigeration cycle," Energy, Elsevier, vol. 189(C).
    3. Yulong Song & Hongsheng Xie & Mengying Yang & Xiangyu Wei & Feng Cao & Xiang Yin, 2023. "A Comprehensive Assessment of the Refrigerant Charging Amount on the Global Performance of a Transcritical CO 2 -Based Bus Air Conditioning and Heat Pump System," Energies, MDPI, vol. 16(6), pages 1-21, March.
    4. Qin, Yanbin & Li, Nanxi & Zhang, Hua & Liu, Baolin, 2021. "Energy and exergy analysis of a Linde-Hampson refrigeration system using R170, R41 and R1132a as low-GWP refrigerant blend components to replace R23," Energy, Elsevier, vol. 229(C).
    5. Sun, Zhili & Wang, Qifan & Xie, Zhiyuan & Liu, Shengchun & Su, Dandan & Cui, Qi, 2019. "Energy and exergy analysis of low GWP refrigerants in cascade refrigeration system," Energy, Elsevier, vol. 170(C), pages 1170-1180.
    6. Xu, Weicong & Zhao, Ruikai & Deng, Shuai & Zhao, Li & Mao, Samuel S., 2021. "Is zeotropic working fluid a promising option for organic Rankine cycle: A quantitative evaluation based on literature data," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    7. Li, Jian & Liu, Qiang & Duan, Yuanyuan & Yang, Zhen, 2017. "Performance analysis of organic Rankine cycles using R600/R601a mixtures with liquid-separated condensation," Applied Energy, Elsevier, vol. 190(C), pages 376-389.
    8. Zhang, Zhaoli & Alelyani, Sami M. & Zhang, Nan & Zeng, Chao & Yuan, Yanping & Phelan, Patrick E., 2018. "Thermodynamic analysis of a novel sodium hydroxide-water solution absorption refrigeration, heating and power system for low-temperature heat sources," Applied Energy, Elsevier, vol. 222(C), pages 1-12.
    9. Hao, Xinyue & Wang, Lin & Wang, Zhanwei & Tan, Yingying & Yan, Xiaona, 2018. "Hybrid auto-cascade refrigeration system coupled with a heat-driven ejector cooling cycle," Energy, Elsevier, vol. 161(C), pages 988-998.
    10. Satanphol, K. & Pridasawas, W. & Suphanit, B., 2017. "A study on optimal composition of zeotropic working fluid in an Organic Rankine Cycle (ORC) for low grade heat recovery," Energy, Elsevier, vol. 123(C), pages 326-339.
    11. Li, Jian & Ge, Zhong & Duan, Yuanyuan & Yang, Zhen & Liu, Qiang, 2018. "Parametric optimization and thermodynamic performance comparison of single-pressure and dual-pressure evaporation organic Rankine cycles," Applied Energy, Elsevier, vol. 217(C), pages 409-421.
    12. Chung, Hyun Joon & Baek, Changhyun & Kang, Hoon & Kim, Dongwoo & Kim, Yongchan, 2018. "Performance evaluation of a gas injection CO2 heat pump according to operating parameters in extreme heating and cooling conditions," Energy, Elsevier, vol. 154(C), pages 337-345.
    13. Aprea, Ciro & Maiorino, Angelo & Mastrullo, Rita, 2011. "Change in energy performance as a result of a R422D retrofit: An experimental analysis for a vapor compression refrigeration plant for a walk-in cooler," Applied Energy, Elsevier, vol. 88(12), pages 4742-4748.
    14. Xinxin Zhang & Yin Zhang & Zhenlei Li & Jingfu Wang & Yuting Wu & Chongfang Ma, 2020. "Zeotropic Mixture Selection for an Organic Rankine Cycle Using a Single Screw Expander," Energies, MDPI, vol. 13(5), pages 1-20, February.
    15. Zhang, Jing & Zhang, Hong-Hu & He, Ya-Ling & Tao, Wen-Quan, 2016. "A comprehensive review on advances and applications of industrial heat pumps based on the practices in China," Applied Energy, Elsevier, vol. 178(C), pages 800-825.
    16. Uusitalo, Antti & Turunen-Saaresti, Teemu & Honkatukia, Juha & Tiainen, Jonna & Jaatinen-Värri, Ahti, 2020. "Numerical analysis of working fluids for large scale centrifugal compressor driven cascade heat pumps upgrading waste heat," Applied Energy, Elsevier, vol. 269(C).
    17. Wang, Enhua & Yu, Zhibin & Collings, Peter, 2017. "Dynamic control strategy of a distillation system for a composition-adjustable organic Rankine cycle," Energy, Elsevier, vol. 141(C), pages 1038-1051.
    18. Hongzeng Ji & Jinchen Pei & Jingyang Cai & Chen Ding & Fen Guo & Yichun Wang, 2023. "Review of Recent Advances in Transcritical CO 2 Heat Pump and Refrigeration Cycles and Their Development in the Vehicle Field," Energies, MDPI, vol. 16(10), pages 1-21, May.
    19. Liu, Xuetao & Hu, Yusheng & Wang, Qifan & Yao, Liang & Li, Minxia, 2021. "Energetic, environmental and economic comparative analyses of modified transcritical CO2 heat pump system to replace R134a system for home heating," Energy, Elsevier, vol. 229(C).
    20. Zendehboudi, Alireza, 2024. "Optimal discharge pressure and performance characteristics of a transcritical CO2 heat pump system with a tri-partite gas cooler for combined space and water heating," Renewable Energy, Elsevier, vol. 226(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:239:y:2019:i:c:p:1142-1153. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.