IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v271y2023ics0360544223004012.html
   My bibliography  Save this article

State-of-charge estimation of lithium-ion batteries based on fractional-order modeling and adaptive square-root cubature Kalman filter

Author

Listed:
  • Chen, Lin
  • Yu, Wentao
  • Cheng, Guoyang
  • Wang, Jierui

Abstract

This paper mainly studies the state of charge (SOC) estimation of lithium batteries based on a fractional-order adaptive square-root cubature Kalman filter (FO-ASRCKF). Firstly, a fractional-order model (FOM) of lithium battery is established by using fractional-order derivative theory. In order to meet the identification accuracy, an improved adaptive genetic algorithm is applied to the process of multi-parameter model identification. Then, the FO-ASRCKF algorithm based on FOM and adaptive rules is proposed, and a comparative experiment with Fractional-order adaptive iterative extended Kalman filter (FO-AIEKF) and Integer-order adaptive square-root cubature Kalman filter (IO-ASRCKF) is carried out. The experimental results show that the proposed FO-ASRCKF can work normally under various working conditions, and it has higher SOC estimation accuracy, with the mean absolute error (MAE) being less than 0.5%. Moreover, it can also overcome the divergence caused by noise and wrong initial values, indicating a better robustness.

Suggested Citation

  • Chen, Lin & Yu, Wentao & Cheng, Guoyang & Wang, Jierui, 2023. "State-of-charge estimation of lithium-ion batteries based on fractional-order modeling and adaptive square-root cubature Kalman filter," Energy, Elsevier, vol. 271(C).
  • Handle: RePEc:eee:energy:v:271:y:2023:i:c:s0360544223004012
    DOI: 10.1016/j.energy.2023.127007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223004012
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.127007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Linghu, Jinqing & Kang, Longyun & Liu, Ming & Luo, Xuan & Feng, Yuanbin & Lu, Chusheng, 2019. "Estimation for state-of-charge of lithium-ion battery based on an adaptive high-degree cubature Kalman filter," Energy, Elsevier, vol. 189(C).
    2. Cui, Zhenhua & Kang, Le & Li, Liwei & Wang, Licheng & Wang, Kai, 2022. "A combined state-of-charge estimation method for lithium-ion battery using an improved BGRU network and UKF," Energy, Elsevier, vol. 259(C).
    3. Peng, Jiankun & Luo, Jiayi & He, Hongwen & Lu, Bing, 2019. "An improved state of charge estimation method based on cubature Kalman filter for lithium-ion batteries," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    4. Chen, Liping & Wu, Xiaobo & Lopes, António M. & Yin, Lisheng & Li, Penghua, 2022. "Adaptive state-of-charge estimation of lithium-ion batteries based on square-root unscented Kalman filter," Energy, Elsevier, vol. 252(C).
    5. Tian, Yong & Huang, Zhijia & Tian, Jindong & Li, Xiaoyu, 2022. "State of charge estimation of lithium-ion batteries based on cubature Kalman filters with different matrix decomposition strategies," Energy, Elsevier, vol. 238(PC).
    6. Shao, Yu-qiang & Liu, Huan-ling & Shao, Xiao-dong & Sang, Lin & Chen, Zeng-tao, 2022. "An all coupled electrochemical-mechanical model for all-solid-state Li-ion batteries considering the effect of contact area loss and compressive pressure," Energy, Elsevier, vol. 239(PA).
    7. Shahjalal, Mohammad & Roy, Probir Kumar & Shams, Tamanna & Fly, Ashley & Chowdhury, Jahedul Islam & Ahmed, Md. Rishad & Liu, Kailong, 2022. "A review on second-life of Li-ion batteries: prospects, challenges, and issues," Energy, Elsevier, vol. 241(C).
    8. Jiang, Cong & Wang, Shunli & Wu, Bin & Fernandez, Carlos & Xiong, Xin & Coffie-Ken, James, 2021. "A state-of-charge estimation method of the power lithium-ion battery in complex conditions based on adaptive square root extended Kalman filter," Energy, Elsevier, vol. 219(C).
    9. Zhang, Xinghui & Li, Zhao & Luo, Lingai & Fan, Yilin & Du, Zhengyu, 2022. "A review on thermal management of lithium-ion batteries for electric vehicles," Energy, Elsevier, vol. 238(PA).
    10. Xiao, Renxin & Hu, Yanwen & Jia, Xianguang & Chen, Guisheng, 2022. "A novel estimation of state of charge for the lithium-ion battery in electric vehicle without open circuit voltage experiment," Energy, Elsevier, vol. 243(C).
    11. Gong, Dongliang & Gao, Ying & Kou, Yalin & Wang, Yurang, 2022. "State of health estimation for lithium-ion battery based on energy features," Energy, Elsevier, vol. 257(C).
    12. He, Xitian & Sun, Bingxiang & Zhang, Weige & Fan, Xinyuan & Su, Xiaojia & Ruan, Haijun, 2022. "Multi-time scale variable-order equivalent circuit model for virtual battery considering initial polarization condition of lithium-ion battery," Energy, Elsevier, vol. 244(PB).
    13. Ma, Wentao & Guo, Peng & Wang, Xiaofei & Zhang, Zhiyu & Peng, Siyuan & Chen, Badong, 2022. "Robust state of charge estimation for Li-ion batteries based on cubature kalman filter with generalized maximum correntropy criterion," Energy, Elsevier, vol. 260(C).
    14. Babaeiyazdi, Iman & Rezaei-Zare, Afshin & Shokrzadeh, Shahab, 2021. "State of charge prediction of EV Li-ion batteries using EIS: A machine learning approach," Energy, Elsevier, vol. 223(C).
    15. Xu, Zhicheng & Wang, Jun & Lund, Peter D. & Zhang, Yaoming, 2022. "Co-estimating the state of charge and health of lithium batteries through combining a minimalist electrochemical model and an equivalent circuit model," Energy, Elsevier, vol. 240(C).
    16. Xu, Zhicheng & Wang, Jun & Lund, Peter D. & Zhang, Yaoming, 2021. "Estimation and prediction of state of health of electric vehicle batteries using discrete incremental capacity analysis based on real driving data," Energy, Elsevier, vol. 225(C).
    17. Wang, Yujie & Chen, Zonghai, 2020. "A framework for state-of-charge and remaining discharge time prediction using unscented particle filter," Applied Energy, Elsevier, vol. 260(C).
    18. Liang, Jialin & Gan, Yunhua & Tan, Meixian & Li, Yong, 2020. "Multilayer electrochemical-thermal coupled modeling of unbalanced discharging in a serially connected lithium-ion battery module," Energy, Elsevier, vol. 209(C).
    19. Jing Hou & He He & Yan Yang & Tian Gao & Yifan Zhang, 2019. "A Variational Bayesian and Huber-Based Robust Square Root Cubature Kalman Filter for Lithium-Ion Battery State of Charge Estimation," Energies, MDPI, vol. 12(9), pages 1-23, May.
    20. Hashemi, Seyed Reza & Mahajan, Ajay Mohan & Farhad, Siamak, 2021. "Online estimation of battery model parameters and state of health in electric and hybrid aircraft application," Energy, Elsevier, vol. 229(C).
    21. Zhu, Qiao & Xu, Mengen & Liu, Weiqun & Zheng, Mengqian, 2019. "A state of charge estimation method for lithium-ion batteries based on fractional order adaptive extended kalman filter," Energy, Elsevier, vol. 187(C).
    22. He, Lin & Wang, Yangyang & Wei, Yujiang & Wang, Mingwei & Hu, Xiaosong & Shi, Qin, 2022. "An adaptive central difference Kalman filter approach for state of charge estimation by fractional order model of lithium-ion battery," Energy, Elsevier, vol. 244(PA).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sulaiman, Mohd Herwan & Mustaffa, Zuriani & Zakaria, Nor Farizan & Saari, Mohd Mawardi, 2023. "Using the evolutionary mating algorithm for optimizing deep learning parameters for battery state of charge estimation of electric vehicle," Energy, Elsevier, vol. 279(C).
    2. Zhu, Chenyu & Wang, Shunli & Yu, Chunmei & Hai, Nan & Fernandez, Carlos & Guerrero, Josep M., 2024. "An improved limited memory-Sage Husa-cubature Kalman filtering algorithm for the state of charge and state of energy co-estimation of lithium-ion batteries based on hysteresis effect-dual polarization," Energy, Elsevier, vol. 306(C).
    3. Lai, Rucong & Wang, Jie & Tian, Yong & Tian, Jindong, 2024. "FedCBE: A federated-learning-based collaborative battery estimation system with non-IID data," Applied Energy, Elsevier, vol. 368(C).
    4. Xinyue Liu & Yang Gao & Kyamra Marma & Yu Miao & Lin Liu, 2024. "Advances in the Study of Techniques to Determine the Lithium-Ion Battery’s State of Charge," Energies, MDPI, vol. 17(7), pages 1-16, March.
    5. Qian, Wei & Li, Wan & Guo, Xiangwei & Wang, Haoyu, 2024. "A switching gain adaptive sliding mode observer for SoC estimation of lithium-ion battery," Energy, Elsevier, vol. 292(C).
    6. Lian, Gaoqi & Ye, Min & Wang, Qiao & Li, Yan & Xia, Baozhou & Zhang, Jiale & Xu, Xinxin, 2024. "Robust state-of-charge estimation for LiFePO4 batteries under wide varying temperature environments," Energy, Elsevier, vol. 293(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Takyi-Aninakwa, Paul & Wang, Shunli & Zhang, Hongying & Yang, Xiao & Fernandez, Carlos, 2023. "A hybrid probabilistic correction model for the state of charge estimation of lithium-ion batteries considering dynamic currents and temperatures," Energy, Elsevier, vol. 273(C).
    2. Liu, Zheng & Zhao, Zhenhua & Qiu, Yuan & Jing, Benqin & Yang, Chunshan & Wu, Huifeng, 2023. "Enhanced state of charge estimation for Li-ion batteries through adaptive maximum correntropy Kalman filter with open circuit voltage correction," Energy, Elsevier, vol. 283(C).
    3. Zhu, Yunlong & Dong, Zhe & Cheng, Zhonghua & Huang, Xiaojin & Dong, Yujie & Zhang, Zuoyi, 2023. "Neural network extended state-observer for energy system monitoring," Energy, Elsevier, vol. 263(PA).
    4. Wang, Yujie & Tian, Jiaqiang & Sun, Zhendong & Wang, Li & Xu, Ruilong & Li, Mince & Chen, Zonghai, 2020. "A comprehensive review of battery modeling and state estimation approaches for advanced battery management systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    5. He, Lin & Wang, Yangyang & Wei, Yujiang & Wang, Mingwei & Hu, Xiaosong & Shi, Qin, 2022. "An adaptive central difference Kalman filter approach for state of charge estimation by fractional order model of lithium-ion battery," Energy, Elsevier, vol. 244(PA).
    6. Chen, Liping & Wu, Xiaobo & Lopes, António M. & Yin, Lisheng & Li, Penghua, 2022. "Adaptive state-of-charge estimation of lithium-ion batteries based on square-root unscented Kalman filter," Energy, Elsevier, vol. 252(C).
    7. Takyi-Aninakwa, Paul & Wang, Shunli & Zhang, Hongying & Yang, Xiaoyong & Fernandez, Carlos, 2022. "An optimized long short-term memory-weighted fading extended Kalman filtering model with wide temperature adaptation for the state of charge estimation of lithium-ion batteries," Applied Energy, Elsevier, vol. 326(C).
    8. Chen, Junxiong & Zhang, Yu & Wu, Ji & Cheng, Weisong & Zhu, Qiao, 2023. "SOC estimation for lithium-ion battery using the LSTM-RNN with extended input and constrained output," Energy, Elsevier, vol. 262(PA).
    9. Qian, Wei & Li, Wan & Guo, Xiangwei & Wang, Haoyu, 2024. "A switching gain adaptive sliding mode observer for SoC estimation of lithium-ion battery," Energy, Elsevier, vol. 292(C).
    10. Zhao, Xinze & Sun, Bingxiang & Zhang, Weige & He, Xitian & Ma, Shichang & Zhang, Junwei & Liu, Xiaopeng, 2024. "Error theory study on EKF-based SOC and effective error estimation strategy for Li-ion batteries," Applied Energy, Elsevier, vol. 353(PA).
    11. Ingvild B. Espedal & Asanthi Jinasena & Odne S. Burheim & Jacob J. Lamb, 2021. "Current Trends for State-of-Charge (SoC) Estimation in Lithium-Ion Battery Electric Vehicles," Energies, MDPI, vol. 14(11), pages 1-24, June.
    12. Shi, Haotian & Wang, Shunli & Huang, Qi & Fernandez, Carlos & Liang, Jianhong & Zhang, Mengyun & Qi, Chuangshi & Wang, Liping, 2024. "Improved electric-thermal-aging multi-physics domain coupling modeling and identification decoupling of complex kinetic processes based on timescale quantification in lithium-ion batteries," Applied Energy, Elsevier, vol. 353(PB).
    13. Anne Christine Lusk & Xin Li & Qiming Liu, 2023. "If the Government Pays for Full Home-Charger Installation, Would Affordable-Housing and Middle-Income Residents Buy Electric Vehicles?," Sustainability, MDPI, vol. 15(5), pages 1-26, March.
    14. Qiao, Jialu & Wang, Shunli & Yu, Chunmei & Yang, Xiao & Fernandez, Carlos, 2023. "A chaotic firefly - Particle filtering method of dynamic migration modeling for the state-of-charge and state-of-health co-estimation of a lithium-ion battery performance," Energy, Elsevier, vol. 263(PE).
    15. Xiong, Wei & Xie, Fang & Xu, Gang & Li, Yumei & Li, Ben & Mo, Yimin & Ma, Fei & Wei, Keke, 2023. "Co-estimation of the model parameter and state of charge for retired lithium-ion batteries over a wide temperature range and battery degradation scope," Renewable Energy, Elsevier, vol. 218(C).
    16. Chen, Zheng & Zhao, Hongqian & Shu, Xing & Zhang, Yuanjian & Shen, Jiangwei & Liu, Yonggang, 2021. "Synthetic state of charge estimation for lithium-ion batteries based on long short-term memory network modeling and adaptive H-Infinity filter," Energy, Elsevier, vol. 228(C).
    17. Shahjalal, Mohammad & Roy, Probir Kumar & Shams, Tamanna & Fly, Ashley & Chowdhury, Jahedul Islam & Ahmed, Md. Rishad & Liu, Kailong, 2022. "A review on second-life of Li-ion batteries: prospects, challenges, and issues," Energy, Elsevier, vol. 241(C).
    18. He, Rong & He, Yongling & Xie, Wenlong & Guo, Bin & Yang, Shichun, 2023. "Comparative analysis for commercial li-ion batteries degradation using the distribution of relaxation time method based on electrochemical impedance spectroscopy," Energy, Elsevier, vol. 263(PD).
    19. Sun, Daoming & Yu, Xiaoli & Wang, Chongming & Zhang, Cheng & Huang, Rui & Zhou, Quan & Amietszajew, Taz & Bhagat, Rohit, 2021. "State of charge estimation for lithium-ion battery based on an Intelligent Adaptive Extended Kalman Filter with improved noise estimator," Energy, Elsevier, vol. 214(C).
    20. Xinfeng Zhang & Xiangjun Li & Kaikai Yang & Zhongyi Wang, 2023. "Lithium-Ion Battery Modeling and State of Charge Prediction Based on Fractional-Order Calculus," Mathematics, MDPI, vol. 11(15), pages 1-15, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:271:y:2023:i:c:s0360544223004012. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.