IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v223y2021ics0360544221003650.html
   My bibliography  Save this article

State of charge prediction of EV Li-ion batteries using EIS: A machine learning approach

Author

Listed:
  • Babaeiyazdi, Iman
  • Rezaei-Zare, Afshin
  • Shokrzadeh, Shahab

Abstract

Due to the significantly complex and nonlinear behavior of li-ion batteries, forecasting the state of charge (SOC) of the batteries is still a great challenge. Therefore, accurate SOC estimation is essential for the proper operation of batteries while the battery is monitored by the battery management system (BMS). To this end, this paper employs informative measurements of electrochemical impedance spectroscopy (EIS) in machine learning models (ML), i.e., linear regression model and Gaussian process regression (GPR), to accurately predict the SOC of li-ion batteries. First, a feature sensitivity analysis of the data is conducted to extract the most reliable features, i.e., the EIS impedances which are highly correlated with SOC, from EIS measurements. Then, the models are fed by the chosen features. The models are designed to train the input features and establish the mapping relationship between the selected features and the SOC. The results demonstrate that the error of the GPR model was found to be less than 3.8%. Considering onboard EIS measurements, this method can be practically embedded in the battery management system for accurate measurements of SOC of li-ion batteries and ensure the proper and efficient operation of battery-powered electric vehicles.

Suggested Citation

  • Babaeiyazdi, Iman & Rezaei-Zare, Afshin & Shokrzadeh, Shahab, 2021. "State of charge prediction of EV Li-ion batteries using EIS: A machine learning approach," Energy, Elsevier, vol. 223(C).
  • Handle: RePEc:eee:energy:v:223:y:2021:i:c:s0360544221003650
    DOI: 10.1016/j.energy.2021.120116
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221003650
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.120116?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zahid, Taimoor & Xu, Kun & Li, Weimin & Li, Chenming & Li, Hongzhe, 2018. "State of charge estimation for electric vehicle power battery using advanced machine learning algorithm under diversified drive cycles," Energy, Elsevier, vol. 162(C), pages 871-882.
    2. Yunwei Zhang & Qiaochu Tang & Yao Zhang & Jiabin Wang & Ulrich Stimming & Alpha A. Lee, 2020. "Identifying degradation patterns of lithium ion batteries from impedance spectroscopy using machine learning," Nature Communications, Nature, vol. 11(1), pages 1-6, December.
    3. Waag, Wladislaw & Käbitz, Stefan & Sauer, Dirk Uwe, 2013. "Experimental investigation of the lithium-ion battery impedance characteristic at various conditions and aging states and its influence on the application," Applied Energy, Elsevier, vol. 102(C), pages 885-897.
    4. Ines Baccouche & Sabeur Jemmali & Bilal Manai & Noshin Omar & Najoua Essoukri Ben Amara, 2017. "Improved OCV Model of a Li-Ion NMC Battery for Online SOC Estimation Using the Extended Kalman Filter," Energies, MDPI, vol. 10(6), pages 1-22, May.
    5. Bizhong Xia & Zhen Sun & Ruifeng Zhang & Deyu Cui & Zizhou Lao & Wei Wang & Wei Sun & Yongzhi Lai & Mingwang Wang, 2017. "A Comparative Study of Three Improved Algorithms Based on Particle Filter Algorithms in SOC Estimation of Lithium Ion Batteries," Energies, MDPI, vol. 10(8), pages 1-14, August.
    6. Shokrzadeh, Shahab & Jafari Jozani, Mohammad & Bibeau, Eric & Molinski, Tom, 2015. "A statistical algorithm for predicting the energy storage capacity for baseload wind power generation in the future electric grids," Energy, Elsevier, vol. 89(C), pages 793-802.
    7. Ming-Hui Chang & Han-Pang Huang & Shu-Wei Chang, 2013. "A New State of Charge Estimation Method for LiFePO 4 Battery Packs Used in Robots," Energies, MDPI, vol. 6(4), pages 1-24, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lijun Zhu & Jian Wang & Yutao Wang & Bin Pan & Lujun Wang, 2024. "Detection of Impedance Inhomogeneity in Lithium-Ion Battery Packs Based on Local Outlier Factor," Energies, MDPI, vol. 17(20), pages 1-20, October.
    2. Li, Renzheng & Wang, Hui & Dai, Haifeng & Hong, Jichao & Tong, Guangyao & Chen, Xinbo, 2022. "Accurate state of charge prediction for real-world battery systems using a novel dual-dropout-based neural network," Energy, Elsevier, vol. 250(C).
    3. He, Rong & He, Yongling & Xie, Wenlong & Guo, Bin & Yang, Shichun, 2023. "Comparative analysis for commercial li-ion batteries degradation using the distribution of relaxation time method based on electrochemical impedance spectroscopy," Energy, Elsevier, vol. 263(PD).
    4. Harasis, Salman & Khan, Irfan & Massoud, Ahmed, 2024. "Enabling large-scale integration of electric bus fleets in harsh environments: Possibilities, potentials, and challenges," Energy, Elsevier, vol. 300(C).
    5. Chen, Junxiong & Zhang, Yu & Wu, Ji & Cheng, Weisong & Zhu, Qiao, 2023. "SOC estimation for lithium-ion battery using the LSTM-RNN with extended input and constrained output," Energy, Elsevier, vol. 262(PA).
    6. Buchicchio, Emanuele & De Angelis, Alessio & Santoni, Francesco & Carbone, Paolo & Bianconi, Francesco & Smeraldi, Fabrizio, 2023. "Battery SOC estimation from EIS data based on machine learning and equivalent circuit model," Energy, Elsevier, vol. 283(C).
    7. Han, Dongho & Kwon, Sanguk & Lee, Miyoung & Kim, Jonghoon & Yoo, Kisoo, 2023. "Electrochemical impedance spectroscopy image transformation-based convolutional neural network for diagnosis of external environment classification affecting abnormal aging of Li-ion batteries," Applied Energy, Elsevier, vol. 345(C).
    8. Zhou, Yong & Dong, Guangzhong & Tan, Qianqian & Han, Xueyuan & Chen, Chunlin & Wei, Jingwen, 2023. "State of health estimation for lithium-ion batteries using geometric impedance spectrum features and recurrent Gaussian process regression," Energy, Elsevier, vol. 262(PB).
    9. Miranda, Matheus H.R. & Silva, Fabrício L. & Lourenço, Maria A.M. & Eckert, Jony J. & Silva, Ludmila C.A., 2023. "Particle swarm optimization of Elman neural network applied to battery state of charge and state of health estimation," Energy, Elsevier, vol. 285(C).
    10. Thomas Märzinger & David Wöss & Petra Steinmetz & Werner Müller & Tobias Pröll, 2021. "Novel Modelling Approach for the Calculation of the Loading Performance of Charging Stations for E-Trucks to Represent Fleet Consumption," Energies, MDPI, vol. 14(12), pages 1-15, June.
    11. Chen, Lin & Yu, Wentao & Cheng, Guoyang & Wang, Jierui, 2023. "State-of-charge estimation of lithium-ion batteries based on fractional-order modeling and adaptive square-root cubature Kalman filter," Energy, Elsevier, vol. 271(C).
    12. Dapai Shi & Jingyuan Zhao & Zhenghong Wang & Heng Zhao & Chika Eze & Junbin Wang & Yubo Lian & Andrew F. Burke, 2023. "Cloud-Based Deep Learning for Co-Estimation of Battery State of Charge and State of Health," Energies, MDPI, vol. 16(9), pages 1-19, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lyons, P.F. & Wade, N.S. & Jiang, T. & Taylor, P.C. & Hashiesh, F. & Michel, M. & Miller, D., 2015. "Design and analysis of electrical energy storage demonstration projects on UK distribution networks," Applied Energy, Elsevier, vol. 137(C), pages 677-691.
    2. Filip Maletić & Mario Hrgetić & Joško Deur, 2020. "Dual Nonlinear Kalman Filter-Based SoC and Remaining Capacity Estimation for an Electric Scooter Li-NMC Battery Pack," Energies, MDPI, vol. 13(3), pages 1-16, January.
    3. Jiangong Zhu & Yixiu Wang & Yuan Huang & R. Bhushan Gopaluni & Yankai Cao & Michael Heere & Martin J. Mühlbauer & Liuda Mereacre & Haifeng Dai & Xinhua Liu & Anatoliy Senyshyn & Xuezhe Wei & Michael K, 2022. "Data-driven capacity estimation of commercial lithium-ion batteries from voltage relaxation," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. Feng, Fei & Yang, Rui & Meng, Jinhao & Xie, Yi & Zhang, Zhiguo & Chai, Yi & Mou, Lisha, 2022. "Electrochemical impedance characteristics at various conditions for commercial solid–liquid electrolyte lithium-ion batteries: Part 1. experiment investigation and regression analysis," Energy, Elsevier, vol. 242(C).
    5. Rauf, Huzaifa & Khalid, Muhammad & Arshad, Naveed, 2022. "Machine learning in state of health and remaining useful life estimation: Theoretical and technological development in battery degradation modelling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    6. Mohammed, Abubakar Gambo & Elfeky, Karem Elsayed & Wang, Qiuwang, 2022. "Recent advancement and enhanced battery performance using phase change materials based hybrid battery thermal management for electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    7. Sandoval, Cinda & Alvarado, Victor M. & Carmona, Jean-Claude & Lopez Lopez, Guadalupe & Gomez-Aguilar, J.F., 2017. "Energy management control strategy to improve the FC/SC dynamic behavior on hybrid electric vehicles: A frequency based distribution," Renewable Energy, Elsevier, vol. 105(C), pages 407-418.
    8. Farmann, Alexander & Waag, Wladislaw & Sauer, Dirk Uwe, 2016. "Application-specific electrical characterization of high power batteries with lithium titanate anodes for electric vehicles," Energy, Elsevier, vol. 112(C), pages 294-306.
    9. Yashraj Tripathy & Andrew McGordon & Anup Barai, 2020. "Improving Accessible Capacity Tracking at Low Ambient Temperatures for Range Estimation of Battery Electric Vehicles," Energies, MDPI, vol. 13(8), pages 1-18, April.
    10. Hao Sun & Bo Jiang & Heze You & Bojian Yang & Xueyuan Wang & Xuezhe Wei & Haifeng Dai, 2021. "Quantitative Analysis of Degradation Modes of Lithium-Ion Battery under Different Operating Conditions," Energies, MDPI, vol. 14(2), pages 1-19, January.
    11. Wenxian Duan & Chuanxue Song & Silun Peng & Feng Xiao & Yulong Shao & Shixin Song, 2020. "An Improved Gated Recurrent Unit Network Model for State-of-Charge Estimation of Lithium-Ion Battery," Energies, MDPI, vol. 13(23), pages 1-19, December.
    12. Li, Guanzheng & Li, Bin & Li, Chao & Wang, Shuai, 2023. "State-of-health rapid estimation for lithium-ion battery based on an interpretable stacking ensemble model with short-term voltage profiles," Energy, Elsevier, vol. 263(PE).
    13. Yun Bao & Yuansheng Chen, 2021. "Lithium-Ion Battery Real-Time Diagnosis with Direct Current Impedance Spectroscopy," Energies, MDPI, vol. 14(15), pages 1-16, July.
    14. Wang, Huan & Li, Yan-Fu & Zhang, Ying, 2023. "Bioinspired spiking spatiotemporal attention framework for lithium-ion batteries state-of-health estimation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    15. Siraprapha Deebansok & Jie Deng & Etienne Calvez & Yachao Zhu & Olivier Crosnier & Thierry Brousse & Olivier Fontaine, 2024. "Capacitive tendency concept alongside supervised machine-learning toward classifying electrochemical behavior of battery and pseudocapacitor materials," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    16. Feng, Zhanyu & Zhang, Jian & Jiang, Han & Yao, Xuejian & Qian, Yu & Zhang, Haiyan, 2024. "Energy consumption prediction strategy for electric vehicle based on LSTM-transformer framework," Energy, Elsevier, vol. 302(C).
    17. Entwistle, Jake & Ge, Ruihuan & Pardikar, Kunal & Smith, Rachel & Cumming, Denis, 2022. "Carbon binder domain networks and electrical conductivity in lithium-ion battery electrodes: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    18. He, Hongwen & Xiong, Rui & Peng, Jiankun, 2016. "Real-time estimation of battery state-of-charge with unscented Kalman filter and RTOS μCOS-II platform," Applied Energy, Elsevier, vol. 162(C), pages 1410-1418.
    19. F. Isorna Llerena & E. López González & J. J. Caparrós Mancera & F. Segura Manzano & J. M. Andújar, 2021. "Hydrogen vs. Battery-Based Propulsion Systems in Unipersonal Vehicles—Developing Solutions to Improve the Sustainability of Urban Mobility," Sustainability, MDPI, vol. 13(10), pages 1-16, May.
    20. Chen, Zheng & Zhao, Hongqian & Shu, Xing & Zhang, Yuanjian & Shen, Jiangwei & Liu, Yonggang, 2021. "Synthetic state of charge estimation for lithium-ion batteries based on long short-term memory network modeling and adaptive H-Infinity filter," Energy, Elsevier, vol. 228(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:223:y:2021:i:c:s0360544221003650. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.