IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v244y2022ipbs0360544221033338.html
   My bibliography  Save this article

Multi-time scale variable-order equivalent circuit model for virtual battery considering initial polarization condition of lithium-ion battery

Author

Listed:
  • He, Xitian
  • Sun, Bingxiang
  • Zhang, Weige
  • Fan, Xinyuan
  • Su, Xiaojia
  • Ruan, Haijun

Abstract

An equivalent circuit model is developed for the virtual battery, which plays a key role in the application of the virtual battery. In this paper, a multi-time scale variable-order equivalent circuit model is proposed. The short and long time scale polarization characteristics are simulated respectively by the fractional-order model and the integer-order RC model, and a first-order RC model is used as the transition model between different time scales. Moreover, the time range for short-time scale model parameter identification is determined based on the electrochemical impedance spectroscopy acquired by the wavelet analysis. The evolution rule of short and long time scales model parameters under different initial polarization conditions and current rate is revealed. The model order changes in order of fractional order value, third-order and second-order. The voltage simulation result of the proposed model exhibits good agreement with current profile experiment, where the root mean square error (RMSE) is 2.838 mV. Under the power profile, compared to the conventional RC model, the RMSE of voltage and current simulation can be reduced by 79.65% and 79.27%.

Suggested Citation

  • He, Xitian & Sun, Bingxiang & Zhang, Weige & Fan, Xinyuan & Su, Xiaojia & Ruan, Haijun, 2022. "Multi-time scale variable-order equivalent circuit model for virtual battery considering initial polarization condition of lithium-ion battery," Energy, Elsevier, vol. 244(PB).
  • Handle: RePEc:eee:energy:v:244:y:2022:i:pb:s0360544221033338
    DOI: 10.1016/j.energy.2021.123084
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221033338
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.123084?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jiabin Duan & Jiapei Zhao & Xinke Li & Satyam Panchal & Jinliang Yuan & Roydon Fraser & Michael Fowler, 2021. "Modeling and Analysis of Heat Dissipation for Liquid Cooling Lithium-Ion Batteries," Energies, MDPI, vol. 14(14), pages 1-19, July.
    2. Bingxiang Sun & Xitian He & Weige Zhang & Yangxi Li & Minming Gong & Yang Yang & Xiaojia Su & Zhenlin Zhu & Wenzhong Gao, 2020. "Control Strategies and Economic Analysis of an LTO Battery Energy Storage System for AGC Ancillary Service," Energies, MDPI, vol. 13(2), pages 1-16, January.
    3. Mingant, R. & Bernard, J. & Sauvant-Moynot, V., 2016. "Novel state-of-health diagnostic method for Li-ion battery in service," Applied Energy, Elsevier, vol. 183(C), pages 390-398.
    4. Hu, Minghui & Li, Yunxiao & Li, Shuxian & Fu, Chunyun & Qin, Datong & Li, Zonghua, 2018. "Lithium-ion battery modeling and parameter identification based on fractional theory," Energy, Elsevier, vol. 165(PB), pages 153-163.
    5. Xiong, Rui & Tian, Jinpeng & Mu, Hao & Wang, Chun, 2017. "A systematic model-based degradation behavior recognition and health monitoring method for lithium-ion batteries," Applied Energy, Elsevier, vol. 207(C), pages 372-383.
    6. Li, Changlong & Cui, Naxin & Wang, Chunyu & Zhang, Chenghui, 2021. "Reduced-order electrochemical model for lithium-ion battery with domain decomposition and polynomial approximation methods," Energy, Elsevier, vol. 221(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yao, Jiachi & Han, Te, 2023. "Data-driven lithium-ion batteries capacity estimation based on deep transfer learning using partial segment of charging/discharging data," Energy, Elsevier, vol. 271(C).
    2. Wang, Bing-Chuan & He, Yan-Bo & Liu, Jiao & Luo, Biao, 2024. "Fast parameter identification of lithium-ion batteries via classification model-assisted Bayesian optimization," Energy, Elsevier, vol. 288(C).
    3. Lu, Xin & Chen, Ning & Li, Hui & Guo, Shiyu & Chen, Zengtao, 2023. "Simulation of the temperature distribution of lithium-ion battery module considering the time-delay effect of the porous electrodes," Energy, Elsevier, vol. 284(C).
    4. Torregrosa, Antonio José & Broatch, Alberto & Olmeda, Pablo & Agizza, Luca, 2023. "A generalized equivalent circuit model for lithium-iron phosphate batteries," Energy, Elsevier, vol. 284(C).
    5. Chen, Lin & Yu, Wentao & Cheng, Guoyang & Wang, Jierui, 2023. "State-of-charge estimation of lithium-ion batteries based on fractional-order modeling and adaptive square-root cubature Kalman filter," Energy, Elsevier, vol. 271(C).
    6. Tang, Ruoli & Zhang, Shangyu & Zhang, Shihan & Zhang, Yan & Lai, Jingang, 2023. "Parameter identification for lithium batteries: Model variable-coupling analysis and a novel cooperatively coevolving identification algorithm," Energy, Elsevier, vol. 263(PB).
    7. Park, Shina & Song, Youngbin & Kim, Sang Woo, 2024. "Simultaneous diagnosis of cell aging and internal short circuit faults in lithium-ion batteries using average leakage interval," Energy, Elsevier, vol. 290(C).
    8. He, Xitian & Sun, Bingxiang & Zhang, Weige & Su, Xiaojia & Ma, Shichang & Li, Hao & Ruan, Haijun, 2023. "Inconsistency modeling of lithium-ion battery pack based on variational auto-encoder considering multi-parameter correlation," Energy, Elsevier, vol. 277(C).
    9. Ji, Jie & Zhou, Mengxiong & Guo, Renwei & Tang, Jiankang & Su, Jiaoyue & Huang, Hui & Sun, Na & Nazir, Muhammad Shahzad & Wang, Yaodong, 2023. "A electric power optimal scheduling study of hybrid energy storage system integrated load prediction technology considering ageing mechanism," Renewable Energy, Elsevier, vol. 215(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shahjalal, Mohammad & Roy, Probir Kumar & Shams, Tamanna & Fly, Ashley & Chowdhury, Jahedul Islam & Ahmed, Md. Rishad & Liu, Kailong, 2022. "A review on second-life of Li-ion batteries: prospects, challenges, and issues," Energy, Elsevier, vol. 241(C).
    2. Zhou, Yong & Dong, Guangzhong & Tan, Qianqian & Han, Xueyuan & Chen, Chunlin & Wei, Jingwen, 2023. "State of health estimation for lithium-ion batteries using geometric impedance spectrum features and recurrent Gaussian process regression," Energy, Elsevier, vol. 262(PB).
    3. Xiao, Feiyu & Xing, Bobin & Kong, Lingzhao & Xia, Yong, 2021. "Impedance-based diagnosis of internal mechanical damage for large-format lithium-ion batteries," Energy, Elsevier, vol. 230(C).
    4. Ning Chen & Xu Zhao & Jiayao Chen & Xiaodong Xu & Peng Zhang & Weihua Gui, 2022. "Design of a Non-Linear Observer for SOC of Lithium-Ion Battery Based on Neural Network," Energies, MDPI, vol. 15(10), pages 1-26, May.
    5. Ji’ang Zhang & Ping Wang & Yushu Liu & Ze Cheng, 2021. "Variable-Order Equivalent Circuit Modeling and State of Charge Estimation of Lithium-Ion Battery Based on Electrochemical Impedance Spectroscopy," Energies, MDPI, vol. 14(3), pages 1-20, February.
    6. Ming Zhang & Yanshuo Liu & Dezhi Li & Xiaoli Cui & Licheng Wang & Liwei Li & Kai Wang, 2023. "Electrochemical Impedance Spectroscopy: A New Chapter in the Fast and Accurate Estimation of the State of Health for Lithium-Ion Batteries," Energies, MDPI, vol. 16(4), pages 1-16, February.
    7. Li, Guanzheng & Li, Bin & Li, Chao & Wang, Shuai, 2023. "State-of-health rapid estimation for lithium-ion battery based on an interpretable stacking ensemble model with short-term voltage profiles," Energy, Elsevier, vol. 263(PE).
    8. Mehmet C. Yagci & Thomas Feldmann & Elmar Bollin & Michael Schmidt & Wolfgang G. Bessler, 2022. "Aging Characteristics of Stationary Lithium-Ion Battery Systems with Serial and Parallel Cell Configurations," Energies, MDPI, vol. 15(11), pages 1-19, May.
    9. Guoqing Jin & Lan Li & Yidan Xu & Minghui Hu & Chunyun Fu & Datong Qin, 2020. "Comparison of SOC Estimation between the Integer-Order Model and Fractional-Order Model Under Different Operating Conditions," Energies, MDPI, vol. 13(7), pages 1-17, April.
    10. Zhang, Yajun & Liu, Yajie & Wang, Jia & Zhang, Tao, 2022. "State-of-health estimation for lithium-ion batteries by combining model-based incremental capacity analysis with support vector regression," Energy, Elsevier, vol. 239(PB).
    11. Ma, Zeyu & Yang, Ruixin & Wang, Zhenpo, 2019. "A novel data-model fusion state-of-health estimation approach for lithium-ion batteries," Applied Energy, Elsevier, vol. 237(C), pages 836-847.
    12. He, Xitian & Sun, Bingxiang & Zhang, Weige & Su, Xiaojia & Ma, Shichang & Li, Hao & Ruan, Haijun, 2023. "Inconsistency modeling of lithium-ion battery pack based on variational auto-encoder considering multi-parameter correlation," Energy, Elsevier, vol. 277(C).
    13. Wen, Shuang & Lin, Ni & Huang, Shengxu & Wang, Zhenpo & Zhang, Zhaosheng, 2023. "Lithium battery health state assessment based on vehicle-to-grid (V2G) real-world data and natural gradient boosting model," Energy, Elsevier, vol. 284(C).
    14. Yang, Ruixin & Xiong, Rui & He, Hongwen & Mu, Hao & Wang, Chun, 2017. "A novel method on estimating the degradation and state of charge of lithium-ion batteries used for electrical vehicles," Applied Energy, Elsevier, vol. 207(C), pages 336-345.
    15. Gao, Tianhan & Lu, Wei, 2024. "Reduced-order electrochemical models with shape functions for fast, accurate prediction of lithium-ion batteries under high C-rates," Applied Energy, Elsevier, vol. 353(PA).
    16. S. Tamilselvi & S. Gunasundari & N. Karuppiah & Abdul Razak RK & S. Madhusudan & Vikas Madhav Nagarajan & T. Sathish & Mohammed Zubair M. Shamim & C. Ahamed Saleel & Asif Afzal, 2021. "A Review on Battery Modelling Techniques," Sustainability, MDPI, vol. 13(18), pages 1-26, September.
    17. Xiaogang Wu & Wenwen Shi & Jiuyu Du, 2017. "Multi-Objective Optimal Charging Method for Lithium-Ion Batteries," Energies, MDPI, vol. 10(9), pages 1-18, August.
    18. Krzysztof Górecki & Krzysztof Posobkiewicz, 2022. "Cooling Systems of Power Semiconductor Devices—A Review," Energies, MDPI, vol. 15(13), pages 1-29, June.
    19. Yan, Lisen & Peng, Jun & Gao, Dianzhu & Wu, Yue & Liu, Yongjie & Li, Heng & Liu, Weirong & Huang, Zhiwu, 2022. "A hybrid method with cascaded structure for early-stage remaining useful life prediction of lithium-ion battery," Energy, Elsevier, vol. 243(C).
    20. Peizheng Li & Jiapei Zhao & Shuai Zhou & Jiabin Duan & Xinke Li & Houcheng Zhang & Jinliang Yuan, 2023. "Design and Optimization of a Liquid Cooling Thermal Management System with Flow Distributors and Spiral Channel Cooling Plates for Lithium-Ion Batteries," Energies, MDPI, vol. 16(5), pages 1-23, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:244:y:2022:i:pb:s0360544221033338. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.