IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v377y2025ipas030626192401818x.html
   My bibliography  Save this article

State of charge estimation for LiFePO4 batteries joint by PID observer and improved EKF in various OCV ranges

Author

Listed:
  • Peng, Simin
  • Zhang, Daohan
  • Dai, Guohong
  • Wang, Lin
  • Jiang, Yuxia
  • Zhou, Feng

Abstract

LiFePO4 batteries are increasingly utilized in electric vehicles due to their superior safety. Accurate state estimation is the basis for the safe and reliable application of LiFePO4 batteries. However, the flat voltage characteristics of LiFePO4 batteries lead to state estimation closed-loop correction as its inherent contradiction. To address this challenge, a model-based SOC estimation method combining proportional-integral-differential (PID) observer and improved extended Kalman filter (EKF) is developed according to different open-circuit-voltage (OCV) ranges, specific processes include: First, an exponentially weighted moving average algorithm with a temperature compensation factor is presented to compensate for the errors in the identified OCV. Secondly, the combination of the PID observer and EKF is chosen adaptively to update SOC within distinct OCV ranges, differentiated by the identified OCV. To achieve optimization of the PID parameters and temperature compensation factors across varying temperatures, an enhanced whale optimization algorithm is developed. To validate the developed method, a series of experiments are performed across a range of temperatures and with multiple driving profiles. The results show that the developed method not only guarantees maximum absolute error of <3 %, but also can converge quickly in the early stage.

Suggested Citation

  • Peng, Simin & Zhang, Daohan & Dai, Guohong & Wang, Lin & Jiang, Yuxia & Zhou, Feng, 2025. "State of charge estimation for LiFePO4 batteries joint by PID observer and improved EKF in various OCV ranges," Applied Energy, Elsevier, vol. 377(PA).
  • Handle: RePEc:eee:appene:v:377:y:2025:i:pa:s030626192401818x
    DOI: 10.1016/j.apenergy.2024.124435
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626192401818X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.124435?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:377:y:2025:i:pa:s030626192401818x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.