IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v308y2024ics0360544224024952.html
   My bibliography  Save this article

A novel joint estimation for core temperature and state of charge of lithium-ion battery based on classification approach and convolutional neural network

Author

Listed:
  • Li, Yichao
  • Ma, Chen
  • Liu, Kailong
  • Chang, Long
  • Zhang, Chenghui
  • Duan, Bin

Abstract

The core temperature (CT) of lithium-ion batteries (LIBs) is crucial for effective thermal management, and is significantly influenced by the state of charge (SOC) among other battery parameters. However, directly measuring CT and SOC poses challenges. This study introduces a novel joint estimation method for CT and SOC, in which classification approach is pioneeringly employed through a two-dimensional convolutional neural network (2D-CNN). SOC is initially estimated and subsequently utilized as an input to refine CT estimation. This process is facilitated by two 2D-CNNs that incorporate measured indices such as current, terminal voltage, surface temperature, and ambient temperature into their inputs. Techniques including data augmentation, sequential optimization, and Gaussian filtering are employed to enhance estimation effect. The methodology is validated using LIB charge/discharge data derived from experiments based on the urban dynamometer driving schedule (UDDS). Results demonstrate that the root-mean-square errors (RMSEs) for CT and SOC estimation are below 0.267 °C and 0.7 %, respectively, across a broad ambient temperature range of −15 °C–55 °C. Consequently, this study confirms the effectiveness of using classification for CT and SOC estimation, illustrating that the proposed method can precisely estimate CT and SOC of LIBs across a wide temperature spectrum. The effectiveness of the deep learning method based on classification in estimating CT and SOC has been validated. Furthermore, a comparative analysis reveals that incorporating SOC as an input for CT estimation notably reduces the training time required by the method.

Suggested Citation

  • Li, Yichao & Ma, Chen & Liu, Kailong & Chang, Long & Zhang, Chenghui & Duan, Bin, 2024. "A novel joint estimation for core temperature and state of charge of lithium-ion battery based on classification approach and convolutional neural network," Energy, Elsevier, vol. 308(C).
  • Handle: RePEc:eee:energy:v:308:y:2024:i:c:s0360544224024952
    DOI: 10.1016/j.energy.2024.132721
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224024952
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.132721?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cui, Zhenhua & Kang, Le & Li, Liwei & Wang, Licheng & Wang, Kai, 2022. "A combined state-of-charge estimation method for lithium-ion battery using an improved BGRU network and UKF," Energy, Elsevier, vol. 259(C).
    2. Fan, Chuanxin & Liu, Kailong & Zhu, Tao & Peng, Qiao, 2024. "Understanding of Lithium-ion battery degradation using multisine-based nonlinear characterization method," Energy, Elsevier, vol. 290(C).
    3. Feng, Xuning & Zheng, Siqi & Ren, Dongsheng & He, Xiangming & Wang, Li & Cui, Hao & Liu, Xiang & Jin, Changyong & Zhang, Fangshu & Xu, Chengshan & Hsu, Hungjen & Gao, Shang & Chen, Tianyu & Li, Yalun , 2019. "Investigating the thermal runaway mechanisms of lithium-ion batteries based on thermal analysis database," Applied Energy, Elsevier, vol. 246(C), pages 53-64.
    4. Zhang, Xinghui & Li, Zhao & Luo, Lingai & Fan, Yilin & Du, Zhengyu, 2022. "A review on thermal management of lithium-ion batteries for electric vehicles," Energy, Elsevier, vol. 238(PA).
    5. Quanqing Yu & Changjiang Wan & Junfu Li & Lixin E & Xin Zhang & Yonghe Huang & Tao Liu, 2021. "An Open Circuit Voltage Model Fusion Method for State of Charge Estimation of Lithium-Ion Batteries," Energies, MDPI, vol. 14(7), pages 1-22, March.
    6. Peng, Qiao & Li, Wei & Fowler, Michael & Chen, Tao & Jiang, Wei & Liu, Kailong, 2024. "Battery calendar degradation trajectory prediction: Data-driven implementation and knowledge inspiration," Energy, Elsevier, vol. 294(C).
    7. Jia, Chunchun & Zhou, Jiaming & He, Hongwen & Li, Jianwei & Wei, Zhongbao & Li, Kunang & Shi, Man, 2023. "A novel energy management strategy for hybrid electric bus with fuel cell health and battery thermal- and health-constrained awareness," Energy, Elsevier, vol. 271(C).
    8. Yang, Fangfang & Zhang, Shaohui & Li, Weihua & Miao, Qiang, 2020. "State-of-charge estimation of lithium-ion batteries using LSTM and UKF," Energy, Elsevier, vol. 201(C).
    9. Fan, Kesen & Wan, Yiming & Wang, Zhuo & Jiang, Kai, 2023. "Time-efficient identification of lithium-ion battery temperature-dependent OCV-SOC curve using multi-output Gaussian process," Energy, Elsevier, vol. 268(C).
    10. Ren, Xiaoqing & Liu, Shulin & Yu, Xiaodong & Dong, Xia, 2021. "A method for state-of-charge estimation of lithium-ion batteries based on PSO-LSTM," Energy, Elsevier, vol. 234(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Chengzhong & Zhao, Hongyu & Wang, Liye & Liao, Chenglin & Wang, Lifang, 2024. "A comparative study on state-of-charge estimation for lithium-rich manganese-based battery based on Bayesian filtering and machine learning methods," Energy, Elsevier, vol. 306(C).
    2. Molla Shahadat Hossain Lipu & Tahia F. Karim & Shaheer Ansari & Md. Sazal Miah & Md. Siddikur Rahman & Sheikh T. Meraj & Rajvikram Madurai Elavarasan & Raghavendra Rajan Vijayaraghavan, 2022. "Intelligent SOX Estimation for Automotive Battery Management Systems: State-of-the-Art Deep Learning Approaches, Open Issues, and Future Research Opportunities," Energies, MDPI, vol. 16(1), pages 1-31, December.
    3. Chen, Junxiong & Zhang, Yu & Wu, Ji & Cheng, Weisong & Zhu, Qiao, 2023. "SOC estimation for lithium-ion battery using the LSTM-RNN with extended input and constrained output," Energy, Elsevier, vol. 262(PA).
    4. Tang, Aihua & Huang, Yukun & Liu, Shangmei & Yu, Quanqing & Shen, Weixiang & Xiong, Rui, 2023. "A novel lithium-ion battery state of charge estimation method based on the fusion of neural network and equivalent circuit models," Applied Energy, Elsevier, vol. 348(C).
    5. Li, Li & Ling, Lei & Xie, Yajun & Zhou, Wencai & Wang, Tianbo & Zhang, Lanchun & Bei, Shaoyi & Zheng, Keqing & Xu, Qiang, 2023. "Comparative study of thermal management systems with different cooling structures for cylindrical battery modules: Side-cooling vs. terminal-cooling," Energy, Elsevier, vol. 274(C).
    6. Gu, Xinyu & See, K.W. & Li, Penghua & Shan, Kangheng & Wang, Yunpeng & Zhao, Liang & Lim, Kai Chin & Zhang, Neng, 2023. "A novel state-of-health estimation for the lithium-ion battery using a convolutional neural network and transformer model," Energy, Elsevier, vol. 262(PB).
    7. Yang, Huizhu & Li, Mingxuan & Wang, Zehui & Ma, Binjian, 2023. "A compact and lightweight hybrid liquid cooling system coupling with Z-type cold plates and PCM composite for battery thermal management," Energy, Elsevier, vol. 263(PE).
    8. Chai, Xuqing & Li, Shihao & Liang, Fengwei, 2024. "A novel battery SOC estimation method based on random search optimized LSTM neural network," Energy, Elsevier, vol. 306(C).
    9. Li, Dexin & Zuo, Wei & Li, Qingqing & Zhang, Guangde & Zhou, Kun & E, Jiaqiang, 2023. "Effects of pulsating flow on the performance of multi-channel cold plate for thermal management of lithium-ion battery pack," Energy, Elsevier, vol. 273(C).
    10. Sulaiman, Mohd Herwan & Mustaffa, Zuriani & Mohamed, Amir Izzani & Samsudin, Ahmad Salihin & Mohd Rashid, Muhammad Ikram, 2024. "Battery state of charge estimation for electric vehicle using Kolmogorov-Arnold networks," Energy, Elsevier, vol. 311(C).
    11. Zhang, Meng & Kang, Guoqing & Wu, Lifeng & Guan, Yong, 2022. "A method for capacity prediction of lithium-ion batteries under small sample conditions," Energy, Elsevier, vol. 238(PC).
    12. Cui, Zhenhua & Kang, Le & Li, Liwei & Wang, Licheng & Wang, Kai, 2022. "A hybrid neural network model with improved input for state of charge estimation of lithium-ion battery at low temperatures," Renewable Energy, Elsevier, vol. 198(C), pages 1328-1340.
    13. Jichao Hong & Fengwei Liang & Xun Gong & Xiaoming Xu & Quanqing Yu, 2022. "Accurate State of Charge Estimation for Real-World Battery Systems Using a Novel Grid Search and Cross Validated Optimised LSTM Neural Network," Energies, MDPI, vol. 15(24), pages 1-14, December.
    14. Xie, Yanxin & Wang, Shunli & Zhang, Gexiang & Fan, Yongcun & Fernandez, Carlos & Blaabjerg, Frede, 2023. "Optimized multi-hidden layer long short-term memory modeling and suboptimal fading extended Kalman filtering strategies for the synthetic state of charge estimation of lithium-ion batteries," Applied Energy, Elsevier, vol. 336(C).
    15. Siyi Tao & Bo Jiang & Xuezhe Wei & Haifeng Dai, 2023. "A Systematic and Comparative Study of Distinct Recurrent Neural Networks for Lithium-Ion Battery State-of-Charge Estimation in Electric Vehicles," Energies, MDPI, vol. 16(4), pages 1-17, February.
    16. Oyewole, Isaiah & Chehade, Abdallah & Kim, Youngki, 2022. "A controllable deep transfer learning network with multiple domain adaptation for battery state-of-charge estimation," Applied Energy, Elsevier, vol. 312(C).
    17. Chen, Lin & Yu, Wentao & Cheng, Guoyang & Wang, Jierui, 2023. "State-of-charge estimation of lithium-ion batteries based on fractional-order modeling and adaptive square-root cubature Kalman filter," Energy, Elsevier, vol. 271(C).
    18. Lian, Gaoqi & Ye, Min & Wang, Qiao & Li, Yan & Xia, Baozhou & Zhang, Jiale & Xu, Xinxin, 2024. "Robust state-of-charge estimation for LiFePO4 batteries under wide varying temperature environments," Energy, Elsevier, vol. 293(C).
    19. Takyi-Aninakwa, Paul & Wang, Shunli & Zhang, Hongying & Yang, Xiaoyong & Fernandez, Carlos, 2022. "An optimized long short-term memory-weighted fading extended Kalman filtering model with wide temperature adaptation for the state of charge estimation of lithium-ion batteries," Applied Energy, Elsevier, vol. 326(C).
    20. Qi, Wei & Qin, Wenhu & Yun, Zhonghua, 2024. "Closed-loop state of charge estimation of Li-ion batteries based on deep learning and robust adaptive Kalman filter," Energy, Elsevier, vol. 307(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:308:y:2024:i:c:s0360544224024952. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.