IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v341y2023ics0306261923003410.html
   My bibliography  Save this article

Offline order recognition for state estimation of Lithium-ion battery using fractional order model

Author

Listed:
  • Yang, Bowen
  • Wang, Dafang
  • Sun, Xu
  • Chen, Shiqin
  • Wang, Xingcheng

Abstract

The orders of the fractional order model (FOM) for lithium-ion battery (LIB) inherit profound electrochemical significance, and their casual assignment and acquisition could lead to physically unreasonable value and hence the numerical instability, which can be fatal especially for on-vehicle applications. To obtain the order accurately, approaches based on the electrochemical impedance spectroscopy (EIS) analysis and the distribution of relaxation time (DRT) transformation are proposed in this paper. Correction of the raw EIS data eliminates the misinterpretation of the order due to parasitic inductance. DRT peak manipulation further facilitates the alteration and isolation of electrochemical processes, allowing concentration on the interested kinetics. The treatments along with their mathematical basis are elaborated, outlining a feasible scheme for the implementation of FOM. Based on the FOMs inspired by the EIS landscape, validity of the ideas is verified under different conditions. Satisfactory estimations of the state of charge (SOC) are achieved with the profiles of fractional order, and the potential diagnosis for the state of health (SOH) is also outlined. This paper aims to provide an engineering-friendly implementation of FOM for the battery management on electrified vehicles.

Suggested Citation

  • Yang, Bowen & Wang, Dafang & Sun, Xu & Chen, Shiqin & Wang, Xingcheng, 2023. "Offline order recognition for state estimation of Lithium-ion battery using fractional order model," Applied Energy, Elsevier, vol. 341(C).
  • Handle: RePEc:eee:appene:v:341:y:2023:i:c:s0306261923003410
    DOI: 10.1016/j.apenergy.2023.120977
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923003410
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.120977?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Waag, Wladislaw & Sauer, Dirk Uwe, 2013. "Adaptive estimation of the electromotive force of the lithium-ion battery after current interruption for an accurate state-of-charge and capacity determination," Applied Energy, Elsevier, vol. 111(C), pages 416-427.
    2. Wang, Yujie & Tian, Jiaqiang & Sun, Zhendong & Wang, Li & Xu, Ruilong & Li, Mince & Chen, Zonghai, 2020. "A comprehensive review of battery modeling and state estimation approaches for advanced battery management systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    3. Xiong, Rui & Sun, Fengchun & Chen, Zheng & He, Hongwen, 2014. "A data-driven multi-scale extended Kalman filtering based parameter and state estimation approach of lithium-ion olymer battery in electric vehicles," Applied Energy, Elsevier, vol. 113(C), pages 463-476.
    4. Lin, Qian & Wang, Jun & Xiong, Rui & Shen, Weixiang & He, Hongwen, 2019. "Towards a smarter battery management system: A critical review on optimal charging methods of lithium ion batteries," Energy, Elsevier, vol. 183(C), pages 220-234.
    5. Hu, Xiaosong & Jiang, Haifu & Feng, Fei & Liu, Bo, 2020. "An enhanced multi-state estimation hierarchy for advanced lithium-ion battery management," Applied Energy, Elsevier, vol. 257(C).
    6. Wang, Yujie & Li, Mince & Chen, Zonghai, 2020. "Experimental study of fractional-order models for lithium-ion battery and ultra-capacitor: Modeling, system identification, and validation," Applied Energy, Elsevier, vol. 278(C).
    7. Shunli Wang & Pu Ren & Paul Takyi-Aninakwa & Siyu Jin & Carlos Fernandez, 2022. "A Critical Review of Improved Deep Convolutional Neural Network for Multi-Timescale State Prediction of Lithium-Ion Batteries," Energies, MDPI, vol. 15(14), pages 1-27, July.
    8. Wang, Shunli & Takyi-Aninakwa, Paul & Jin, Siyu & Yu, Chunmei & Fernandez, Carlos & Stroe, Daniel-Ioan, 2022. "An improved feedforward-long short-term memory modeling method for the whole-life-cycle state of charge prediction of lithium-ion batteries considering current-voltage-temperature variation," Energy, Elsevier, vol. 254(PA).
    9. He, Lin & Wang, Yangyang & Wei, Yujiang & Wang, Mingwei & Hu, Xiaosong & Shi, Qin, 2022. "An adaptive central difference Kalman filter approach for state of charge estimation by fractional order model of lithium-ion battery," Energy, Elsevier, vol. 244(PA).
    10. Jiang, Cong & Wang, Shunli & Wu, Bin & Fernandez, Carlos & Xiong, Xin & Coffie-Ken, James, 2021. "A state-of-charge estimation method of the power lithium-ion battery in complex conditions based on adaptive square root extended Kalman filter," Energy, Elsevier, vol. 219(C).
    11. Xiong, Rui & Pan, Yue & Shen, Weixiang & Li, Hailong & Sun, Fengchun, 2020. "Lithium-ion battery aging mechanisms and diagnosis method for automotive applications: Recent advances and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rodríguez-Iturriaga, Pablo & García, Víctor Manuel & Rodríguez-Bolívar, Salvador & Valdés, Enrique Ernesto & Anseán, David & López-Villanueva, Juan Antonio, 2024. "A coupled electrothermal lithium-ion battery reduced-order model including heat generation due to solid diffusion," Applied Energy, Elsevier, vol. 367(C).
    2. Zeng, Jiawei & Wang, Shunli & Cao, Wen & Zhou, Yifei & Fernandez, Carlos & Guerrero, Josep M., 2024. "Battery asynchronous fractional-order thermoelectric coupling modeling and state of charge estimation based on frequency characteristic separation at low temperatures," Energy, Elsevier, vol. 307(C).
    3. Wang, Shaojin & Tang, Jinrui & Xiong, Binyu & Fan, Junqiu & Li, Yang & Chen, Qihong & Xie, Changjun & Wei, Zhongbao, 2024. "Comparison of techniques based on frequency response analysis for state of health estimation in lithium-ion batteries," Energy, Elsevier, vol. 304(C).
    4. Rodríguez-Iturriaga, Pablo & Anseán, David & Rodríguez-Bolívar, Salvador & García, Víctor Manuel & González, Manuela & López-Villanueva, Juan Antonio, 2024. "Modeling current-rate effects in lithium-ion batteries based on a distributed, multi-particle equivalent circuit model," Applied Energy, Elsevier, vol. 353(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ingvild B. Espedal & Asanthi Jinasena & Odne S. Burheim & Jacob J. Lamb, 2021. "Current Trends for State-of-Charge (SoC) Estimation in Lithium-Ion Battery Electric Vehicles," Energies, MDPI, vol. 14(11), pages 1-24, June.
    2. Shi, Haotian & Wang, Shunli & Huang, Qi & Fernandez, Carlos & Liang, Jianhong & Zhang, Mengyun & Qi, Chuangshi & Wang, Liping, 2024. "Improved electric-thermal-aging multi-physics domain coupling modeling and identification decoupling of complex kinetic processes based on timescale quantification in lithium-ion batteries," Applied Energy, Elsevier, vol. 353(PB).
    3. Takyi-Aninakwa, Paul & Wang, Shunli & Zhang, Hongying & Yang, Xiao & Fernandez, Carlos, 2023. "A hybrid probabilistic correction model for the state of charge estimation of lithium-ion batteries considering dynamic currents and temperatures," Energy, Elsevier, vol. 273(C).
    4. Shahjalal, Mohammad & Roy, Probir Kumar & Shams, Tamanna & Fly, Ashley & Chowdhury, Jahedul Islam & Ahmed, Md. Rishad & Liu, Kailong, 2022. "A review on second-life of Li-ion batteries: prospects, challenges, and issues," Energy, Elsevier, vol. 241(C).
    5. Dai, Haifeng & Jiang, Bo & Hu, Xiaosong & Lin, Xianke & Wei, Xuezhe & Pecht, Michael, 2021. "Advanced battery management strategies for a sustainable energy future: Multilayer design concepts and research trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    6. Li, Xiaoyu & Yuan, Changgui & Wang, Zhenpo & Xie, Jiale, 2022. "A data-fusion framework for lithium battery health condition Estimation Based on differential thermal voltammetry," Energy, Elsevier, vol. 239(PC).
    7. Shunli Wang & Pu Ren & Paul Takyi-Aninakwa & Siyu Jin & Carlos Fernandez, 2022. "A Critical Review of Improved Deep Convolutional Neural Network for Multi-Timescale State Prediction of Lithium-Ion Batteries," Energies, MDPI, vol. 15(14), pages 1-27, July.
    8. Xu, Xiaodong & Tang, Shengjin & Han, Xuebing & Lu, Languang & Wu, Yu & Yu, Chuanqiang & Sun, Xiaoyan & Xie, Jian & Feng, Xuning & Ouyang, Minggao, 2023. "Fast capacity prediction of lithium-ion batteries using aging mechanism-informed bidirectional long short-term memory network," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    9. Takyi-Aninakwa, Paul & Wang, Shunli & Zhang, Hongying & Li, Huan & Xu, Wenhua & Fernandez, Carlos, 2022. "An optimized relevant long short-term memory-squared gain extended Kalman filter for the state of charge estimation of lithium-ion batteries," Energy, Elsevier, vol. 260(C).
    10. Li, Kuo & Gao, Xiao & Liu, Caixia & Chang, Chun & Li, Xiaoyu, 2023. "A novel Co-estimation framework of state-of-charge, state-of-power and capacity for lithium-ion batteries using multi-parameters fusion method," Energy, Elsevier, vol. 269(C).
    11. Zhong, Hao & Lei, Fei & Zhu, Wenhao & Zhang, Zhe, 2022. "An operation efficacy-oriented predictive control management for power-redistributable lithium-ion battery pack," Energy, Elsevier, vol. 251(C).
    12. Guo, Wenchao & Yang, Lin & Deng, Zhongwei & Li, Jilin & Bian, Xiaolei, 2023. "Rapid online health estimation for lithium-ion batteries based on partial constant-voltage charging segment," Energy, Elsevier, vol. 281(C).
    13. Peng Song & Zhisheng Zhang, 2023. "Research on Multiple Load Short-Term Forecasting Model of Integrated Energy Distribution System Based on Mogrifier-Quantum Weighted MELSTM," Energies, MDPI, vol. 16(9), pages 1-13, April.
    14. Takyi-Aninakwa, Paul & Wang, Shunli & Zhang, Hongying & Yang, Xiaoyong & Fernandez, Carlos, 2022. "An optimized long short-term memory-weighted fading extended Kalman filtering model with wide temperature adaptation for the state of charge estimation of lithium-ion batteries," Applied Energy, Elsevier, vol. 326(C).
    15. Okay, Kamil & Eray, Sermet & Eray, Aynur, 2022. "Development of prototype battery management system for PV system," Renewable Energy, Elsevier, vol. 181(C), pages 1294-1304.
    16. He, Hongwen & Xiong, Rui & Peng, Jiankun, 2016. "Real-time estimation of battery state-of-charge with unscented Kalman filter and RTOS μCOS-II platform," Applied Energy, Elsevier, vol. 162(C), pages 1410-1418.
    17. Cuma, Mehmet Ugras & Koroglu, Tahsin, 2015. "A comprehensive review on estimation strategies used in hybrid and battery electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 517-531.
    18. Fu, Shiyi & Tao, Shengyu & Fan, Hongtao & He, Kun & Liu, Xutao & Tao, Yulin & Zuo, Junxiong & Zhang, Xuan & Wang, Yu & Sun, Yaojie, 2024. "Data-driven capacity estimation for lithium-ion batteries with feature matching based transfer learning method," Applied Energy, Elsevier, vol. 353(PA).
    19. Li, Zongxiang & Li, Liwei & Chen, Jing & Wang, Dongqing, 2024. "A multi-head attention mechanism aided hybrid network for identifying batteries’ state of charge," Energy, Elsevier, vol. 286(C).
    20. Hu, Chao & Jain, Gaurav & Tamirisa, Prabhakar & Gorka, Tom, 2014. "Method for estimating capacity and predicting remaining useful life of lithium-ion battery," Applied Energy, Elsevier, vol. 126(C), pages 182-189.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:341:y:2023:i:c:s0306261923003410. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.