IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v263y2023ipbs0360544222026342.html
   My bibliography  Save this article

Investigation on the potential of using carbon-free ammonia in large two-stroke marine engines by dual-fuel combustion strategy

Author

Listed:
  • Zhu, Jizhen
  • Zhou, Dezhi
  • Yang, Wenming
  • Qian, Yong
  • Mao, Yebing
  • Lu, Xingcai

Abstract

Ammonia (NH3) as a carbon-free fuel is gaining much attention in the shipping industry for its enormous potential of global decarbonization, which is expected to achieve large-scale applications in marine engines by dual-fuel (DF) combustion technology. As such, this study was conducted to explore the emission reduction potential of NH3/diesel DF combustion strategy via low-pressure gas injection in large low-speed two-stroke marine engines using computational fluid dynamics (CFD) modeling coupled with chemical kinetics. An established in-house CFD platform, KIVA-CHEMKIN-CDAC, was employed to perform engine simulations, while an DF combustion mechanism was constructed in this work to mimic the oxidation behaviors of NH3 and diesel as well as the emissions formation. It was found that NH3 admission exhibits a significant inhibiting effect on the autoignition of pilot fuel. Increasing ammonia substitution ratio (ASR) will prolong the ignition delay, resulting in high intensity of premixed combustion. Generally, NH3/diesel DF combustion mode shows two-stage heat release shape. The first stage is characterized by the premixed combustion of diesel–NH3–air mixtures, whereas the dominant combustion regime of the second stage highly depends on the NH3 concentration in the premixed charge. In the very lean NH3-air mixtures, the second stage corresponds to the mixing-controlled diffusion combustion phase; but for the richer NH3-air mixtures, it could be controlled by the turbulent flame propagation. NOx emission decreases when the ASR does not exceed 40%, otherwise increases significantly. The former is probably due to the Thermal DeNOx process dominated by NH2 + NO = N2 + H2O, while the latter is due to the fuel-bound nitrogen. As expected, CO2 emission is reduced monotonically for the same total fuel energy with the increase of ASR, confirming that the utilization of zero-carbon fuel is the most direct means to reduce CO2 emissions. Moreover, there is a trade-off relationship between NOx and N2O emissions. This is because N2O formation usually occurs at lower temperatures (i.e., T < 1400 K). Furthermore, advancing the pilot-fuel injection timing could reduce the unburned NH3 and N2O emissions. Therefore, optimization of injection timing can achieve lower emissions while maintain higher efficiency.

Suggested Citation

  • Zhu, Jizhen & Zhou, Dezhi & Yang, Wenming & Qian, Yong & Mao, Yebing & Lu, Xingcai, 2023. "Investigation on the potential of using carbon-free ammonia in large two-stroke marine engines by dual-fuel combustion strategy," Energy, Elsevier, vol. 263(PB).
  • Handle: RePEc:eee:energy:v:263:y:2023:i:pb:s0360544222026342
    DOI: 10.1016/j.energy.2022.125748
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222026342
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.125748?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhong, Wenjun & Pachiannan, Tamilselvan & Li, Zilong & Qian, Yong & Zhang, Yanzhi & Wang, Qian & He, Zhixia & Lu, Xingcai, 2019. "Combustion and emission characteristics of gasoline/hydrogenated catalytic biodiesel blends in gasoline compression ignition engines under different loads of double injection strategies," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    2. Xu, Leilei & Bai, Xue-Song & Jia, Ming & Qian, Yong & Qiao, Xinqi & Lu, Xingcai, 2018. "Experimental and modeling study of liquid fuel injection and combustion in diesel engines with a common rail injection system," Applied Energy, Elsevier, vol. 230(C), pages 287-304.
    3. Xu, Leilei & Bai, Xue-Song & Li, Changle & Tunestål, Per & Tunér, Martin & Lu, Xingcai, 2019. "Combustion characteristics of gasoline DICI engine in the transition from HCCI to PPC: Experiment and numerical analysis," Energy, Elsevier, vol. 185(C), pages 922-937.
    4. Zhou, Dezhi & Tay, Kun Lin & Tu, Yaojie & Li, Jing & Yang, Wenming & Zhao, Dan, 2018. "A numerical investigation on the injection timing of boot injection rate-shapes in a kerosene-diesel engine with a clustered dynamic adaptive chemistry method," Applied Energy, Elsevier, vol. 220(C), pages 117-126.
    5. Li, Zilong & Zhang, Yaoyuan & Huang, Guan & Zhao, Wenbin & He, Zhuoyao & Qian, Yong & Lu, Xingcai, 2020. "Control of intake boundary conditions for enabling clean combustion in variable engine conditions under intelligent charge compression ignition (ICCI) mode," Applied Energy, Elsevier, vol. 274(C).
    6. Li, Yaopeng & Jia, Ming & Chang, Yachao & Liu, Yaodong & Xie, Maozhao & Wang, Tianyou & Zhou, Lei, 2014. "Parametric study and optimization of a RCCI (reactivity controlled compression ignition) engine fueled with methanol and diesel," Energy, Elsevier, vol. 65(C), pages 319-332.
    7. Pham, Quangkhai & Park, Sungwook & Agarwal, Avinash Kumar & Park, Suhan, 2022. "Review of dual-fuel combustion in the compression-ignition engine: Spray, combustion, and emission," Energy, Elsevier, vol. 250(C).
    8. Lee, Chia-fon & Pang, Yuxin & Wu, Han & Nithyanandan, Karthik & Liu, Fushui, 2020. "An optical investigation of substitution rates on natural gas/diesel dual-fuel combustion in a diesel engine," Applied Energy, Elsevier, vol. 261(C).
    9. Wang, Dawei & Shi, Lei & Zhu, Sipeng & Liu, Bo & Qian, Yuehua & Deng, Kangyao, 2020. "Numerical and thermodynamic study on effects of high and low pressure exhaust gas recirculation on turbocharged marine low-speed engine," Applied Energy, Elsevier, vol. 261(C).
    10. Karvounis, Nikolas & Pang, Kar Mun & Mayer, Stefan & Walther, Jens Honoré, 2018. "Numerical simulation of condensation of sulfuric acid and water in a large two-stroke marine diesel engine," Applied Energy, Elsevier, vol. 211(C), pages 1009-1020.
    11. Liu, Junheng & Wu, Pengcheng & Ji, Qian & Sun, Ping & Wang, Pan & Meng, Zhongwei & Ma, Hongjie, 2022. "Experimental study on effects of pilot injection strategy on combustion and emission characteristics of diesel/methanol dual-fuel engine under low load," Energy, Elsevier, vol. 247(C).
    12. Tay, Kun Lin & Yang, Wenming & Li, Jing & Zhou, Dezhi & Yu, Wenbin & Zhao, Feiyang & Chou, Siaw Kiang & Mohan, Balaji, 2017. "Numerical investigation on the combustion and emissions of a kerosene-diesel fueled compression ignition engine assisted by ammonia fumigation," Applied Energy, Elsevier, vol. 204(C), pages 1476-1488.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rafael Estevez & Francisco J. López-Tenllado & Laura Aguado-Deblas & Felipa M. Bautista & Antonio A. Romero & Diego Luna, 2023. "Current Research on Green Ammonia (NH 3 ) as a Potential Vector Energy for Power Storage and Engine Fuels: A Review," Energies, MDPI, vol. 16(14), pages 1-33, July.
    2. Sagin, Sergii V. & Sagin, Sergii S. & Fomin, Oleksij & Gaichenia, Oleksandr & Zablotskyi, Yurii & Píštěk, Václav & Kučera, Pavel, 2024. "Use of biofuels in marine diesel engines for sustainable and safe maritime transport," Renewable Energy, Elsevier, vol. 224(C).
    3. Sergii Sagin & Arsenii Sagin, 2023. "Development of method for managing risk factors for emergency situations when using low-sulfur content fuel in marine diesel engines," Technology audit and production reserves, PC TECHNOLOGY CENTER, vol. 5(1(73)), pages 37-43, October.
    4. Wang, Xinran & Li, Tie & Chen, Run & Li, Shiyan & Kuang, Min & Lv, Yibin & Wang, Yu & Rao, Honghua & Liu, Yanzhao & Lv, Xiaodong, 2024. "Exploring the GHG reduction potential of pilot diesel-ignited ammonia engines - Effects of diesel injection timing and ammonia energetic ratio," Applied Energy, Elsevier, vol. 357(C).
    5. Shi, Guodong & Li, Pengfei & Li, Kesheng & Hu, Fan & Liu, Qian & Zhou, Haoyu & Liu, Zhaohui, 2023. "Insight into NOx formation characteristics of ammonia oxidation in N2 and H2O atmospheres," Energy, Elsevier, vol. 285(C).
    6. Sergii V. Sagin & Sergii S. Sagin & Volodymyr Madey, 2023. "Analysis of methods of managing the environmental safety of the navigation passage of ships of maritime transport," Technology audit and production reserves, PC TECHNOLOGY CENTER, vol. 4(3(72)), pages 33-42, August.
    7. Wei, Wenwen & Li, Gesheng & Zhang, Zunhua & Long, Yanxiang & Zhang, Hanyuyang & Huang, Yong & Zhou, Mengni & Wei, Yi, 2023. "Effects of ammonia addition on the performance and emissions for a spark-ignition marine natural gas engine," Energy, Elsevier, vol. 272(C).
    8. Xu, Leilei & Xu, Shijie & Bai, Xue-Song & Repo, Juho Aleksi & Hautala, Saana & Hyvönen, Jari, 2023. "Performance and emission characteristics of an ammonia/diesel dual-fuel marine engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    9. Wang, Huaiyu & Ji, Changwei & Wang, Du & Wang, Zhe & Yang, Jinxin & Meng, Hao & Shi, Cheng & Wang, Shuofeng & Wang, Xin & Ge, Yunshan & Yang, Wenming, 2023. "Investigation on the potential of using carbon-free ammonia and hydrogen in small-scaled Wankel rotary engines," Energy, Elsevier, vol. 283(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shi, Zhicheng & Lee, Chia-fon & Wu, Han & Wu, Yang & Zhang, Lu & Liu, Fushui, 2019. "Optical diagnostics of low-temperature ignition and combustion characteristics of diesel/kerosene blends under cold-start conditions," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    2. Zhong, Shenghui & Zhang, Fan & Jangi, Mehdi & Bai, Xue-Song & Yao, Mingfa & Peng, Zhijun, 2020. "Structure and propagation of n-heptane/air premixed flame in low temperature ignition regime," Applied Energy, Elsevier, vol. 275(C).
    3. Xu, Leilei & Treacy, Mark & Zhang, Yan & Aziz, Amir & Tuner, Martin & Bai, Xue-Song, 2022. "Comparison of efficiency and emission characteristics in a direct-injection compression ignition engine fuelled with iso-octane and methanol under low temperature combustion conditions," Applied Energy, Elsevier, vol. 312(C).
    4. Xu, Leilei & Bai, Xue-Song & Li, Yaopeng & Treacy, Mark & Li, Changle & Tunestål, Per & Tunér, Martin & Lu, Xingcai, 2020. "Effect of piston bowl geometry and compression ratio on in-cylinder combustion and engine performance in a gasoline direct-injection compression ignition engine under different injection conditions," Applied Energy, Elsevier, vol. 280(C).
    5. Park, Hyunwook & Shim, Euijoon & Lee, Junsun & Oh, Seungmook & Kim, Changup & Lee, Yonggyu & Kang, Kernyong, 2023. "Comparative evaluation of conventional dual fuel, early pilot, and reactivity-controlled compression ignition modes in a natural gas-diesel dual-fuel engine," Energy, Elsevier, vol. 268(C).
    6. Pinto, G.M. & da Costa, R.B.R. & de Souza, T.A.Z. & Rosa, A.J.A.C. & Raats, O.O. & Roque, L.F.A. & Frez, G.V. & Coronado, C.J.R., 2023. "Experimental investigation of performance and emissions of a CI engine operating with HVO and farnesane in dual-fuel mode with natural gas and biogas," Energy, Elsevier, vol. 277(C).
    7. Zhao, Wenbin & Mi, Shijie & Wu, Haoqing & Zhang, Yaoyuan & He, Zhuoyao & Qian, Yong & Lu, Xingcai, 2022. "Towards a comprehensive understanding of mode transition between biodiesel-biobutanol dual-fuel ICCI low temperature combustion and conventional CI combustion - Part ΙΙ: A system optimization at low l," Energy, Elsevier, vol. 241(C).
    8. Nadimi, Ebrahim & Przybyła, Grzegorz & Løvås, Terese & Peczkis, Grzegorz & Adamczyk, Wojciech, 2023. "Experimental and numerical study on direct injection of liquid ammonia and its injection timing in an ammonia-biodiesel dual injection engine," Energy, Elsevier, vol. 284(C).
    9. Xu, Leilei & Xu, Shijie & Bai, Xue-Song & Repo, Juho Aleksi & Hautala, Saana & Hyvönen, Jari, 2023. "Performance and emission characteristics of an ammonia/diesel dual-fuel marine engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    10. Zhong, Shenghui & Xu, Shijie & Bai, Xue-Song & Peng, Zhijun & Zhang, Fan, 2021. "Large eddy simulation of n-heptane/syngas pilot ignition spray combustion: Ignition process, liftoff evolution and pollutant emissions," Energy, Elsevier, vol. 233(C).
    11. Rafael Estevez & Francisco J. López-Tenllado & Laura Aguado-Deblas & Felipa M. Bautista & Antonio A. Romero & Diego Luna, 2023. "Current Research on Green Ammonia (NH 3 ) as a Potential Vector Energy for Power Storage and Engine Fuels: A Review," Energies, MDPI, vol. 16(14), pages 1-33, July.
    12. Xu, Shijie & Zhong, Shenghui & Pang, Kar Mun & Yu, Senbin & Jangi, Mehdi & Bai, Xue-song, 2020. "Effects of ambient methanol on pollutants formation in dual-fuel spray combustion at varying ambient temperatures: A large-eddy simulation," Applied Energy, Elsevier, vol. 279(C).
    13. Kale, Aneesh Vijay & Krishnasamy, Anand, 2023. "Experimental study of homogeneous charge compression ignition combustion in a light-duty diesel engine fueled with isopropanol–gasoline blends," Energy, Elsevier, vol. 264(C).
    14. Masurier, J.-B. & Foucher, F. & Dayma, G. & Dagaut, P., 2015. "Ozone applied to the homogeneous charge compression ignition engine to control alcohol fuels combustion," Applied Energy, Elsevier, vol. 160(C), pages 566-580.
    15. Maria Cristina Cameretti & Roberta De Robbio & Ezio Mancaruso & Marco Palomba, 2022. "CFD Study of Dual Fuel Combustion in a Research Diesel Engine Fueled by Hydrogen," Energies, MDPI, vol. 15(15), pages 1-21, July.
    16. Muhssen, Hassan Sadah & Masuri, Siti Ujila & Sahari, Barkawi Bin & Hairuddin, Abdul Aziz, 2021. "Design improvement of compressed natural gas (CNG)-Air mixer for diesel dual-fuel engines using computational fluid dynamics," Energy, Elsevier, vol. 216(C).
    17. Leonid Plotnikov & Nikita Grigoriev, 2021. "Modernization of the Mechanical Fuel System of a Diesel Locomotive Engine through Physical and Numerical Modeling," Energies, MDPI, vol. 14(24), pages 1-15, December.
    18. Liu, Shang & Lin, Zhelong & Zhang, Hao & Lei, Nuo & Qi, Yunliang & Wang, Zhi, 2023. "Impact of ammonia addition on knock resistance and combustion performance in a gasoline engine with high compression ratio," Energy, Elsevier, vol. 262(PA).
    19. Taghavifar, Hadi & Mazari, Farhad, 2022. "1D diesel engine cycle modeling integrated with MOPSO optimization for improved NOx control and pressure boost," Energy, Elsevier, vol. 247(C).
    20. Li, Zilong & Zhang, Yaoyuan & Huang, Guan & Zhao, Wenbin & He, Zhuoyao & Qian, Yong & Lu, Xingcai, 2020. "Control of intake boundary conditions for enabling clean combustion in variable engine conditions under intelligent charge compression ignition (ICCI) mode," Applied Energy, Elsevier, vol. 274(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:263:y:2023:i:pb:s0360544222026342. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.