IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v311y2024ics0360544224032080.html
   My bibliography  Save this article

Ammonia diffusion combustion and emission formation characteristics in a single cylinder two stroke engine

Author

Listed:
  • Dong, Pengbo
  • Chen, Shihao
  • Zhang, Lenan
  • Zhang, Zhenxian
  • Long, Wuqiang
  • Wang, Qingyang
  • Chen, Weize

Abstract

Liquid ammonia diffusion combustion (LADC) is an effective approach to achieving high ammonia energy ratio (AER) and combustion efficiency in engines. However, there is a lack of simulation studies of LADC mode in ammonia/diesel dual direct injection engines. To address this gap, the study develops a numerical model based on an independently modified marine two-stroke engine. This model analyzes the combustion performance of ammonia in LADC mode and the pollutant generation mechanisms in LADC mode across various AER conditions. The findings indicate that in the LADC mode, the liquid phase ammonia spray exhibits a concentrated distribution area, facilitating thorough combustion of ammonia fuel. The diesel mixture and flame are entrained into the liquid phase ammonia spray, facilitating multi point ignition. This process notably enhances combustion speed, thereby reducing overall combustion duration. In comparison to pure diesel combustion, soot emissions are reduced by 99 % under the LADC mode, and CA90 advanced by 11.8 °C A. In addition, when the AER range is from 50 % to 70 %, the engine exhibits favorable combustion and emission characteristics. By appropriately adjusting the liquid ammonia injection quantity, the indicated thermal efficiency improves by 10.7 %, the equivalent indication specific fuel consumption decreases by 13.9 %, and the emission such as NOx and soot can be also reduced effectively.

Suggested Citation

  • Dong, Pengbo & Chen, Shihao & Zhang, Lenan & Zhang, Zhenxian & Long, Wuqiang & Wang, Qingyang & Chen, Weize, 2024. "Ammonia diffusion combustion and emission formation characteristics in a single cylinder two stroke engine," Energy, Elsevier, vol. 311(C).
  • Handle: RePEc:eee:energy:v:311:y:2024:i:c:s0360544224032080
    DOI: 10.1016/j.energy.2024.133432
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224032080
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.133432?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tu, Yaojie & Zhang, Haiyang & Guiberti, Thibault F. & Avila Jimenez, Cristian D. & Liu, Hao & Roberts, William L., 2024. "Experimental and numerical study of combustion and emission characteristics of NH3/CH4/air premixed swirling flames with air-staging in a model combustor," Applied Energy, Elsevier, vol. 367(C).
    2. Zhang, Yanzhi & Xu, Leilei & Zhu, Yizi & Xu, Shijie & Bai, Xue-Song, 2023. "Numerical study on liquid ammonia direct injection spray characteristics under engine-relevant conditions," Applied Energy, Elsevier, vol. 334(C).
    3. Zhou, Xinyi & Li, Tie & Wang, Ning & Wang, Xinran & Chen, Run & Li, Shiyan, 2023. "Pilot diesel-ignited ammonia dual fuel low-speed marine engines: A comparative analysis of ammonia premixed and high-pressure spray combustion modes with CFD simulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    4. Chen, Hao & Su, Xin & Li, Junhui & Zhong, Xianglin, 2019. "Effects of gasoline and polyoxymethylene dimethyl ethers blending in diesel on the combustion and emission of a common rail diesel engine," Energy, Elsevier, vol. 171(C), pages 981-999.
    5. Liu, Shang & Lin, Zhelong & Qi, Yunliang & Wang, Zhi & Yang, Dongsheng & Lu, Guoxiang & Wang, Bo, 2024. "Combustion and emission characteristics of a spark ignition engine fueled with ammonia/gasoline and pure ammonia," Applied Energy, Elsevier, vol. 369(C).
    6. Dong, Pengbo & Liu, Kunlong & Zhang, Lenan & Zhang, Zhenxian & Long, Wuqiang & Tian, Hua, 2024. "Study on the synergistic control of nitrogenous emissions and greenhouse gas of ammonia/diesel dual direct injection two-stroke engine," Energy, Elsevier, vol. 307(C).
    7. Zhu, Jizhen & Zhou, Dezhi & Yang, Wenming & Qian, Yong & Mao, Yebing & Lu, Xingcai, 2023. "Investigation on the potential of using carbon-free ammonia in large two-stroke marine engines by dual-fuel combustion strategy," Energy, Elsevier, vol. 263(PB).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dong, Pengbo & Liu, Kunlong & Zhang, Lenan & Zhang, Zhenxian & Long, Wuqiang & Tian, Hua, 2024. "Study on the synergistic control of nitrogenous emissions and greenhouse gas of ammonia/diesel dual direct injection two-stroke engine," Energy, Elsevier, vol. 307(C).
    2. Wang, Xinran & Li, Tie & Chen, Run & Li, Shiyan & Kuang, Min & Lv, Yibin & Wang, Yu & Rao, Honghua & Liu, Yanzhao & Lv, Xiaodong, 2024. "Exploring the GHG reduction potential of pilot diesel-ignited ammonia engines - Effects of diesel injection timing and ammonia energetic ratio," Applied Energy, Elsevier, vol. 357(C).
    3. Zhou, Xinyi & Li, Tie & Wang, Ning & Wu, Zehao & Cao, Jiale & Chen, Run & Huang, Shuai & Li, Shiyan, 2024. "Similarity of high-pressure direct-injection liquid ammonia spray for different-sized engines," Energy, Elsevier, vol. 310(C).
    4. Rafael Estevez & Francisco J. López-Tenllado & Laura Aguado-Deblas & Felipa M. Bautista & Antonio A. Romero & Diego Luna, 2023. "Current Research on Green Ammonia (NH 3 ) as a Potential Vector Energy for Power Storage and Engine Fuels: A Review," Energies, MDPI, vol. 16(14), pages 1-33, July.
    5. Cheng, Qiang & Muhammad, Akram & Kaario, Ossi & Ahmad, Zeeshan & Martti, Larmi, 2025. "Ammonia as a sustainable fuel: Review and novel strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 207(C).
    6. Zhang, Junqing & Chen, Danan & Lai, Shini & Li, Jun & Huang, Hongyu & Kobayashi, Noriyuki, 2024. "Numerical simulation and spray model development of liquid ammonia injection under diesel-engine conditions," Energy, Elsevier, vol. 294(C).
    7. Wang, Huaiyu & Ji, Changwei & Wang, Du & Wang, Zhe & Yang, Jinxin & Meng, Hao & Shi, Cheng & Wang, Shuofeng & Wang, Xin & Ge, Yunshan & Yang, Wenming, 2023. "Investigation on the potential of using carbon-free ammonia and hydrogen in small-scaled Wankel rotary engines," Energy, Elsevier, vol. 283(C).
    8. Nadimi, Ebrahim & Przybyła, Grzegorz & Løvås, Terese & Peczkis, Grzegorz & Adamczyk, Wojciech, 2023. "Experimental and numerical study on direct injection of liquid ammonia and its injection timing in an ammonia-biodiesel dual injection engine," Energy, Elsevier, vol. 284(C).
    9. Shin, Jisoo & Park, Sungwook, 2024. "Numerical analysis and optimization of combustion and emissions in an ammonia-diesel dual-fuel engine using an ammonia direct injection strategy," Energy, Elsevier, vol. 289(C).
    10. Xu, Leilei & Xu, Shijie & Bai, Xue-Song & Repo, Juho Aleksi & Hautala, Saana & Hyvönen, Jari, 2023. "Performance and emission characteristics of an ammonia/diesel dual-fuel marine engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    11. Yin, Bingqian & Lu, Zhen & Shi, Lei & Lu, Tianlong & Ye, Jianpeng & Ma, Junqing & Wang, Tianyou, 2024. "Numerical simulation of a spark ignition ammonia marine engine for future ship power applications," Energy, Elsevier, vol. 302(C).
    12. Shi, Zhicheng & Lee, Chia-fon & Wu, Han & Wu, Yang & Zhang, Lu & Liu, Fushui, 2019. "Optical diagnostics of low-temperature ignition and combustion characteristics of diesel/kerosene blends under cold-start conditions," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    13. Elbanna, Ahmed Mohammed & Cheng, Xiaobei, 2024. "The role of charge reactivity in ammonia/diesel dual fuel combustion in compression ignition engine," Energy, Elsevier, vol. 306(C).
    14. Wei, Wenwen & Li, Gesheng & Zhang, Zunhua & Long, Yanxiang & Zhang, Hanyuyang & Huang, Yong & Zhou, Mengni & Wei, Yi, 2023. "Effects of ammonia addition on the performance and emissions for a spark-ignition marine natural gas engine," Energy, Elsevier, vol. 272(C).
    15. Mei, Qihao & Liu, Long & Abu Mansor, Mohd Radzi, 2024. "Investigation on spray combustion modeling for performance analysis of future low- and zero-carbon DI engine," Energy, Elsevier, vol. 302(C).
    16. Huang, Haozhong & Huang, Rong & Guo, Xiaoyu & Pan, Mingzhang & Teng, Wenwen & Chen, Yingjie & Li, Zhongju, 2019. "Effects of pine oil additive and pilot injection strategies on energy distribution, combustion and emissions in a diesel engine at low-load condition," Applied Energy, Elsevier, vol. 250(C), pages 185-197.
    17. Sergii V. Sagin & Sergii S. Sagin & Volodymyr Madey, 2023. "Analysis of methods of managing the environmental safety of the navigation passage of ships of maritime transport," Technology audit and production reserves, PC TECHNOLOGY CENTER, vol. 4(3(72)), pages 33-42, August.
    18. Li, Yuhui & Huang, Yinmin & Chen, Hanyu & Wei, Feng & Zhang, Zunhua & Zhou, Mengni, 2024. "Combustion and emission of diesel/PODE/gasoline blended fuel in a diesel engine that meet the China VI emission standards," Energy, Elsevier, vol. 301(C).
    19. Vikas Sharma & Angad Panesar & Guillaume de Sercey & Steven Begg, 2024. "A Review of Ammonia Combustion and Emissions Characteristics in Spark-Ignition Engines and Future Road Map," Energies, MDPI, vol. 18(1), pages 1-29, December.
    20. Kihyun Kim & Ocktaeck Lim, 2020. "Investigation of the Spray Development Process of Gasoline-Biodiesel Blended Fuel Sprays in a Constant Volume Chamber," Energies, MDPI, vol. 13(18), pages 1-22, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:311:y:2024:i:c:s0360544224032080. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.