IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v357y2024ics0306261923018019.html
   My bibliography  Save this article

Exploring the GHG reduction potential of pilot diesel-ignited ammonia engines - Effects of diesel injection timing and ammonia energetic ratio

Author

Listed:
  • Wang, Xinran
  • Li, Tie
  • Chen, Run
  • Li, Shiyan
  • Kuang, Min
  • Lv, Yibin
  • Wang, Yu
  • Rao, Honghua
  • Liu, Yanzhao
  • Lv, Xiaodong

Abstract

Ammonia-diesel dual-fuel engines have been demonstrated as a promising technology to reduce the greenhouse gas (GHG) emissions. However, understandings of the operational boundaries and combustion mechanism in the ammonia-diesel dual-fuel engines are far from adequate, and the published works are mostly done with relatively low ammonia substitution ratios. To bridge the gap between the technology status and the potential in engineering applications, a series of engine bench tests of the pilot diesel-ignited ammonia combustion with detailed analysis of the combustion performance and exhaust gas emissions are conducted in this study to explore the GHG reduction potential. As the first report, the effects of the diesel injection timing and ammonia energetic ratio on the performance and exhaust gas emissions of the dual-fuel engine at various loads and a fixed speed are evaluated in this paper. As the ammonia energetic ratio increases, the diesel injection timing for the stable engine operation becomes narrower. Increasing the ammonia energetic ratio decreases the indicated thermal efficiency. The ammonia-diesel dual-fuel engine can maintain the stable of COVIMEP below 3% at a wide ammonia energetic ratio range, the indicated thermal efficiency with the tested upmost 90% ammonia energetic ratio can reach about 34% if an optimized diesel injection timing is implemented. The unburned ammonia increases linearly with the ammonia energetic ratio while the unburned ammonia ratios of total input ammonia are similar at the different ammonia energetic ratios. In comparison to the conventional pure-diesel mode, while the CO2 emission decreases by 50% and 72%, the equivalent CO2 emission (i.e., CO2 + 265 N2O, labelled as CO2e) decreases by 24% and 55% at the 60% and 80% ammonia energetic ratios in the ammonia-diesel mode, respectively. In the ammonia-diesel dual-fuel mode, the specific CO2e, N2O and unburned ammonia decrease with the engine load increasing from 50% to 100%, while the highest indicated thermal efficiency is reached at the 75% load.

Suggested Citation

  • Wang, Xinran & Li, Tie & Chen, Run & Li, Shiyan & Kuang, Min & Lv, Yibin & Wang, Yu & Rao, Honghua & Liu, Yanzhao & Lv, Xiaodong, 2024. "Exploring the GHG reduction potential of pilot diesel-ignited ammonia engines - Effects of diesel injection timing and ammonia energetic ratio," Applied Energy, Elsevier, vol. 357(C).
  • Handle: RePEc:eee:appene:v:357:y:2024:i:c:s0306261923018019
    DOI: 10.1016/j.apenergy.2023.122437
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923018019
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.122437?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xiang, Dong & Zhou, Yunpeng, 2018. "Concept design and techno-economic performance of hydrogen and ammonia co-generation by coke-oven gas-pressure swing adsorption integrated with chemical looping hydrogen process," Applied Energy, Elsevier, vol. 229(C), pages 1024-1034.
    2. Zhang, Yanzhi & Xu, Leilei & Zhu, Yizi & Xu, Shijie & Bai, Xue-Song, 2023. "Numerical study on liquid ammonia direct injection spray characteristics under engine-relevant conditions," Applied Energy, Elsevier, vol. 334(C).
    3. Zhou, Xinyi & Li, Tie & Wang, Ning & Wang, Xinran & Chen, Run & Li, Shiyan, 2023. "Pilot diesel-ignited ammonia dual fuel low-speed marine engines: A comparative analysis of ammonia premixed and high-pressure spray combustion modes with CFD simulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    4. Chai, Wai Siong & Bao, Yulei & Jin, Pengfei & Tang, Guang & Zhou, Lei, 2021. "A review on ammonia, ammonia-hydrogen and ammonia-methane fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    5. Qi, Meng & Kim, Minsu & Dat Vo, Nguyen & Yin, Liang & Liu, Yi & Park, Jinwoo & Moon, Il, 2022. "Proposal and surrogate-based cost-optimal design of an innovative green ammonia and electricity co-production system via liquid air energy storage," Applied Energy, Elsevier, vol. 314(C).
    6. Zhu, Jizhen & Zhou, Dezhi & Yang, Wenming & Qian, Yong & Mao, Yebing & Lu, Xingcai, 2023. "Investigation on the potential of using carbon-free ammonia in large two-stroke marine engines by dual-fuel combustion strategy," Energy, Elsevier, vol. 263(PB).
    7. Tay, Kun Lin & Yang, Wenming & Li, Jing & Zhou, Dezhi & Yu, Wenbin & Zhao, Feiyang & Chou, Siaw Kiang & Mohan, Balaji, 2017. "Numerical investigation on the combustion and emissions of a kerosene-diesel fueled compression ignition engine assisted by ammonia fumigation," Applied Energy, Elsevier, vol. 204(C), pages 1476-1488.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xinyi Zhou & Tie Li & Run Chen & Yijie Wei & Xinran Wang & Ning Wang & Shiyan Li & Min Kuang & Wenming Yang, 2024. "Ammonia marine engine design for enhanced efficiency and reduced greenhouse gas emissions," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    2. Nadimi, Ebrahim & Przybyła, Grzegorz & Løvås, Terese & Peczkis, Grzegorz & Adamczyk, Wojciech, 2023. "Experimental and numerical study on direct injection of liquid ammonia and its injection timing in an ammonia-biodiesel dual injection engine," Energy, Elsevier, vol. 284(C).
    3. Rafael Estevez & Francisco J. López-Tenllado & Laura Aguado-Deblas & Felipa M. Bautista & Antonio A. Romero & Diego Luna, 2023. "Current Research on Green Ammonia (NH 3 ) as a Potential Vector Energy for Power Storage and Engine Fuels: A Review," Energies, MDPI, vol. 16(14), pages 1-33, July.
    4. Wang, Huaiyu & Ji, Changwei & Wang, Du & Wang, Zhe & Yang, Jinxin & Meng, Hao & Shi, Cheng & Wang, Shuofeng & Wang, Xin & Ge, Yunshan & Yang, Wenming, 2023. "Investigation on the potential of using carbon-free ammonia and hydrogen in small-scaled Wankel rotary engines," Energy, Elsevier, vol. 283(C).
    5. Wei, Wenwen & Li, Gesheng & Zhang, Zunhua & Long, Yanxiang & Zhang, Hanyuyang & Huang, Yong & Zhou, Mengni & Wei, Yi, 2023. "Effects of ammonia addition on the performance and emissions for a spark-ignition marine natural gas engine," Energy, Elsevier, vol. 272(C).
    6. Shin, Jisoo & Park, Sungwook, 2024. "Numerical analysis and optimization of combustion and emissions in an ammonia-diesel dual-fuel engine using an ammonia direct injection strategy," Energy, Elsevier, vol. 289(C).
    7. Xu, Leilei & Xu, Shijie & Bai, Xue-Song & Repo, Juho Aleksi & Hautala, Saana & Hyvönen, Jari, 2023. "Performance and emission characteristics of an ammonia/diesel dual-fuel marine engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    8. Zhang, Junqing & Chen, Danan & Lai, Shini & Li, Jun & Huang, Hongyu & Kobayashi, Noriyuki, 2024. "Numerical simulation and spray model development of liquid ammonia injection under diesel-engine conditions," Energy, Elsevier, vol. 294(C).
    9. Che, Gelegen & Zhang, Yanyan & Tang, Lixin & Zhao, Shengnan, 2023. "A deep reinforcement learning based multi-objective optimization for the scheduling of oxygen production system in integrated iron and steel plants," Applied Energy, Elsevier, vol. 345(C).
    10. Shi, Zhicheng & Lee, Chia-fon & Wu, Han & Wu, Yang & Zhang, Lu & Liu, Fushui, 2019. "Optical diagnostics of low-temperature ignition and combustion characteristics of diesel/kerosene blends under cold-start conditions," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    11. Ahmed, Shoaib & Li, Tie & Yi, Ping & Chen, Run, 2023. "Environmental impact assessment of green ammonia-powered very large tanker ship for decarbonized future shipping operations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    12. Wang, Chenyao & Zhang, Fujun & Wang, Enhua & Yu, Chuncun & Gao, Hongli & Liu, Bolan & Zhao, Zhenfeng & Zhao, Changlu, 2019. "Experimental study on knock suppression of spark-ignition engine fuelled with kerosene via water injection," Applied Energy, Elsevier, vol. 242(C), pages 248-259.
    13. Wang, Siqi & Chong, Cheng Tung & Xie, Tian & Józsa, Viktor & Ng, Jo-Han, 2023. "Ammonia/methane dual-fuel injection and Co-firing strategy in a swirl flame combustor for pollutant emissions control," Energy, Elsevier, vol. 281(C).
    14. Zhang, Hanfei & Wang, Ligang & Van herle, Jan & Maréchal, François & Desideri, Umberto, 2020. "Techno-economic comparison of green ammonia production processes," Applied Energy, Elsevier, vol. 259(C).
    15. Zhang, Hanfei & Wang, Ligang & Van herle, Jan & Maréchal, François & Desideri, Umberto, 2021. "Techno-economic comparison of 100% renewable urea production processes," Applied Energy, Elsevier, vol. 284(C).
    16. Chen, Zhanming & He, Haibin & Wu, Jie & Wang, Lei & Lou, Hua & Zhao, Pengyun & Wang, Tao & Zhang, Haitao & Chen, Hao, 2024. "An experimental study the cross spray and combustion characteristics diesel and ammonia in a constant volume combustion chamber," Energy, Elsevier, vol. 293(C).
    17. He, Xiufen & Guo, Wei & Liu, Yunong & Zuo, Zhongqi & Wang, Li, 2024. "Utmost substance recovery and utilization for integrated technology of air separation unit and liquid air energy storage and its saving benefits," Renewable Energy, Elsevier, vol. 225(C).
    18. Zhou, Xinyi & Li, Tie & Wang, Ning & Wang, Xinran & Chen, Run & Li, Shiyan, 2023. "Pilot diesel-ignited ammonia dual fuel low-speed marine engines: A comparative analysis of ammonia premixed and high-pressure spray combustion modes with CFD simulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    19. Liang, He & Yan, Xingqing & Shi, Enhua & Wang, Xinfei & Qi, Chang & Ding, Jianfei & Zhang, Lianzhuo & Chen, Lei & Lv, Xianshu & Yu, Jianliang, 2024. "Effect of hydrogen blending on ammonia/air explosion characteristics under wide equivalence ratio," Energy, Elsevier, vol. 297(C).
    20. Sharma, Debojit & Lee, Bok Jik & Dash, Sukanta Kumar & Reddy, V. Mahendra, 2023. "Experimental and numerical investigation on ultra-high intensity premixed LPG- air combustion in a novel porous stack burner," Energy, Elsevier, vol. 272(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:357:y:2024:i:c:s0306261923018019. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.