IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v211y2018icp1009-1020.html
   My bibliography  Save this article

Numerical simulation of condensation of sulfuric acid and water in a large two-stroke marine diesel engine

Author

Listed:
  • Karvounis, Nikolas
  • Pang, Kar Mun
  • Mayer, Stefan
  • Walther, Jens Honoré

Abstract

In the present study, three-dimensional (3D) computational fluid dynamics simulations are performed to examine the process of sulfuric acid (H2SO4) and water (H2O) condensation in a large two-stroke marine diesel engine. A skeletal n-heptane chemical mechanism is coupled with a sulfur (S) subset to simulate the combustion process as well as the formation of sulfuric oxides (SOx) and H2SO4. The condensation process is simulated using a fluid film model which is coupled with the in-cylinder gas phase. Prior to the engine simulations, the fluid film condensation model is validated using the experimental data of sulfuric acid condensation rate in a laminar pipe flow. Next, the engine model is validated against the experimental sulfur dioxide (SO2) to sulfur trioxide (SO3) conversion obtained from the corresponding test engine. Both of the validation studies show a good agreement with the experimental data. The engine model is then utilized to simulate condensation for different operating conditions. The engine simulation results reveal that the fluid film has a significant effect on the total mass of sulfuric acid vapor and a marginal effect on the total mass of water vapor. A close to linear correlation is found between the fuel sulfur content and the total condensed mass of sulfuric acid. The level of humidity of the scavenging air does not affect the condensation of sulfuric acid considerably, relative to the humidity increase, but it has a high impact on water condensation. The study of the scavenging pressure level reveals a counter intuitive behavior where the condensation rates decrease with higher scavenging pressures due to the flow regime and flame size. Next, increasing the cylinder liner temperature decreases significantly the water condensation contrary to the sulfuric acid condensation which is marginally affected. The increase in lubricant film thickness results in a decrease for both the sulfuric acid and water condensation with a more pronounced reduction for water. Finally, a comparison between the high and low load operating conditions reveals a small drop in the total condensed mass of sulfuric acid and water for the low load conditions.

Suggested Citation

  • Karvounis, Nikolas & Pang, Kar Mun & Mayer, Stefan & Walther, Jens Honoré, 2018. "Numerical simulation of condensation of sulfuric acid and water in a large two-stroke marine diesel engine," Applied Energy, Elsevier, vol. 211(C), pages 1009-1020.
  • Handle: RePEc:eee:appene:v:211:y:2018:i:c:p:1009-1020
    DOI: 10.1016/j.apenergy.2017.11.085
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917316847
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.11.085?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pang, Kar Mun & Karvounis, Nikolas & Walther, Jens Honore & Schramm, Jesper, 2016. "Numerical investigation of soot formation and oxidation processes under large two-stroke marine diesel engine-like conditions using integrated CFD-chemical kinetics," Applied Energy, Elsevier, vol. 169(C), pages 874-887.
    2. Pang, Kar Mun & Karvounis, Nikolas & Walther, Jens Honore & Schramm, Jesper & Glarborg, Peter & Mayer, Stefan, 2017. "Modelling of temporal and spatial evolution of sulphur oxides and sulphuric acid under large, two-stroke marine engine-like conditions using integrated CFD-chemical kinetics," Applied Energy, Elsevier, vol. 193(C), pages 60-73.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhu, Jizhen & Zhou, Dezhi & Yang, Wenming & Qian, Yong & Mao, Yebing & Lu, Xingcai, 2023. "Investigation on the potential of using carbon-free ammonia in large two-stroke marine engines by dual-fuel combustion strategy," Energy, Elsevier, vol. 263(PB).
    2. Yao, Zhi-Min & Qian, Zuo-Qin & Li, Rong & Hu, Eric, 2019. "Energy efficiency analysis of marine high-powered medium-speed diesel engine base on energy balance and exergy," Energy, Elsevier, vol. 176(C), pages 991-1006.
    3. Taghavifar, Hadi & Mazari, Farhad, 2022. "1D diesel engine cycle modeling integrated with MOPSO optimization for improved NOx control and pressure boost," Energy, Elsevier, vol. 247(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Xinlei & Wang, Hu & Wang, Xiaofeng & Zheng, Zunqing & Yao, Mingfa, 2017. "Experimental and modelling investigations of the diesel surrogate fuels in direct injection compression ignition combustion," Applied Energy, Elsevier, vol. 189(C), pages 187-200.
    2. Li, Dun & Gao, Jianmin & Zhao, Ziqi & Du, Qian & Dong, Heming & Cui, Zhaoyang, 2022. "Effects of iron on coal pyrolysis-derived soot formation," Energy, Elsevier, vol. 249(C).
    3. Sun, Xiuxiu & Liang, Xingyu & Shu, Gequn & lin, Jiansheng & Wei, Haiqiao & Zhou, Peilin, 2018. "Development of a surrogate fuel mechanism for application in two-stroke marine diesel engine," Energy, Elsevier, vol. 153(C), pages 56-64.
    4. Wu, Shaohua & Akroyd, Jethro & Mosbach, Sebastian & Brownbridge, George & Parry, Owen & Page, Vivian & Yang, Wenming & Kraft, Markus, 2020. "Efficient simulation and auto-calibration of soot particle processes in Diesel engines," Applied Energy, Elsevier, vol. 262(C).
    5. Yin, Chungen, 2017. "Prediction of air-fuel and oxy-fuel combustion through a generic gas radiation property model," Applied Energy, Elsevier, vol. 189(C), pages 449-459.
    6. Wu, Shaohua & Lao, Chung Ting & Akroyd, Jethro & Mosbach, Sebastian & Yang, Wenming & Kraft, Markus, 2020. "A joint moment projection method and maximum entropy approach for simulation of soot formation and oxidation in diesel engines," Applied Energy, Elsevier, vol. 258(C).
    7. Wang, Dawei & Shi, Lei & Zhu, Sipeng & Liu, Bo & Qian, Yuehua & Deng, Kangyao, 2020. "Numerical and thermodynamic study on effects of high and low pressure exhaust gas recirculation on turbocharged marine low-speed engine," Applied Energy, Elsevier, vol. 261(C).
    8. Theotokatos, Gerasimos & Guan, Cong & Chen, Hui & Lazakis, Iraklis, 2018. "Development of an extended mean value engine model for predicting the marine two-stroke engine operation at varying settings," Energy, Elsevier, vol. 143(C), pages 533-545.
    9. Wu, Shaohua & Yang, Wenming & Xu, Hongpeng & Jiang, Yu, 2019. "Investigation of soot aggregate formation and oxidation in compression ignition engines with a pseudo bi-variate soot model," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    10. Ling-Chin, Janie & Roskilly, Anthony P., 2016. "Investigating the implications of a new-build hybrid power system for Roll-on/Roll-off cargo ships from a sustainability perspective – A life cycle assessment case study," Applied Energy, Elsevier, vol. 181(C), pages 416-434.
    11. Wu, Shaohua & Zhou, Dezhi & Yang, Wenming, 2019. "Implementation of an efficient method of moments for treatment of soot formation and oxidation processes in three-dimensional engine simulations," Applied Energy, Elsevier, vol. 254(C).
    12. Thomas Lauer & Jens Frühhaber, 2020. "Towards a Predictive Simulation of Turbulent Combustion?—An Assessment for Large Internal Combustion Engines," Energies, MDPI, vol. 14(1), pages 1-26, December.
    13. Pang, Kar Mun & Karvounis, Nikolas & Walther, Jens Honore & Schramm, Jesper & Glarborg, Peter & Mayer, Stefan, 2017. "Modelling of temporal and spatial evolution of sulphur oxides and sulphuric acid under large, two-stroke marine engine-like conditions using integrated CFD-chemical kinetics," Applied Energy, Elsevier, vol. 193(C), pages 60-73.
    14. Tang, Yuanyuan & Zhang, Jundong & Gan, Huibing & Jia, Baozhu & Xia, Yu, 2017. "Development of a real-time two-stroke marine diesel engine model with in-cylinder pressure prediction capability," Applied Energy, Elsevier, vol. 194(C), pages 55-70.
    15. Geertsma, R.D. & Visser, K. & Negenborn, R.R., 2018. "Adaptive pitch control for ships with diesel mechanical and hybrid propulsion," Applied Energy, Elsevier, vol. 228(C), pages 2490-2509.
    16. Geertsma, R.D. & Negenborn, R.R. & Visser, K. & Loonstijn, M.A. & Hopman, J.J., 2017. "Pitch control for ships with diesel mechanical and hybrid propulsion: Modelling, validation and performance quantification," Applied Energy, Elsevier, vol. 206(C), pages 1609-1631.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:211:y:2018:i:c:p:1009-1020. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.