IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v312y2024ics0360544224034376.html
   My bibliography  Save this article

Exploring energy utilization of the methanol/dimethyl ether dual-fuel engine under the methanol reforming strategy: A comparison of different low-temperature combustion modes

Author

Listed:
  • Xu, Zhen
  • Wang, Jiefan
  • Zhao, Pengqi
  • Jia, Ming
  • Chang, Yachao
  • Du, Liming

Abstract

Numerous studies have explored methanol and dimethyl ether (DME) as alternative engine fuels to enhance thermal efficiency and lower emissions. In this study, based on methanol reforming, a new potential strategy for the realization of the methanol/DME dual-fuel compression-ignition engine by fueling only methanol is proposed. The methanol/DME dual-fuel engine under three low-temperature combustion modes (i.e., reactivity controlled compression ignition (RCCI), reverse-reactivity controlled compression ignition (R-RCCI), and homogenous charged compression ignition (HCCI)) is computationally optimized, and the methanol reforming ratio is considered. The results demonstrate that the R-RCCI mode displays enhanced performance in both combustion efficiency and emissions, achieving an equivalent indicated specific fuel consumption (EISFC) of 152.3 g/kWh and nitrogen oxide (NOx) emissions far below the Euro VI regulatory threshold. A double injection of methanol with a minor secondary injection in the R-RCCI mode facilitates more pronounced stratified combustion, and the ringing intensity (RI) can be well controlled. The mode-specific optimal DME energy ratio was determined, approximately 40 % for RCCI and R-RCCI, and around 14 % for HCCI. The demand for the DME energy ratio can be realized by the onboard methanol reforming system, which demonstrates the feasibility of the combination of the fuel reforming strategy with low-temperature combustion modes.

Suggested Citation

  • Xu, Zhen & Wang, Jiefan & Zhao, Pengqi & Jia, Ming & Chang, Yachao & Du, Liming, 2024. "Exploring energy utilization of the methanol/dimethyl ether dual-fuel engine under the methanol reforming strategy: A comparison of different low-temperature combustion modes," Energy, Elsevier, vol. 312(C).
  • Handle: RePEc:eee:energy:v:312:y:2024:i:c:s0360544224034376
    DOI: 10.1016/j.energy.2024.133659
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224034376
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.133659?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yin, Xiaojun & Yue, Guangzhao & Liu, Junlong & Duan, Hao & Duan, Qimeng & Kou, Hailiang & Wang, Ying & Yang, Bo & Zeng, Ke, 2023. "Investigation into the operating range of a dual-direct injection engine fueled with methanol and diesel," Energy, Elsevier, vol. 267(C).
    2. Pham, Quangkhai & Park, Sungwook & Agarwal, Avinash Kumar & Park, Suhan, 2022. "Review of dual-fuel combustion in the compression-ignition engine: Spray, combustion, and emission," Energy, Elsevier, vol. 250(C).
    3. Liu, Junheng & Ma, Haoran & Liang, Wenwen & Yang, Jun & Sun, Ping & Wang, Xidong & Wang, Yongxu & Wang, Pan, 2022. "Experimental investigation on combustion characteristics and influencing factors of PODE/methanol dual-fuel engine," Energy, Elsevier, vol. 260(C).
    4. Duraisamy, Ganesh & Rangasamy, Murugan & Govindan, Nagarajan, 2020. "A comparative study on methanol/diesel and methanol/PODE dual fuel RCCI combustion in an automotive diesel engine," Renewable Energy, Elsevier, vol. 145(C), pages 542-556.
    5. Taghavifar, Hadi & Nemati, Arash & Walther, Jens Honore, 2019. "Combustion and exergy analysis of multi-component diesel-DME-methanol blends in HCCI engine," Energy, Elsevier, vol. 187(C).
    6. Li, Yaopeng & Jia, Ming & Chang, Yachao & Liu, Yaodong & Xie, Maozhao & Wang, Tianyou & Zhou, Lei, 2014. "Parametric study and optimization of a RCCI (reactivity controlled compression ignition) engine fueled with methanol and diesel," Energy, Elsevier, vol. 65(C), pages 319-332.
    7. Yang, Shichen & Wan, Mingding & Shen, Lizhong & Wang, Zhengjiang & Huang, Fenlian & Ma, Yuting & Xiao, Yuhan, 2024. "Investigation of the impacts of regeneration temperature and methanol substitution rate on the active regeneration of diesel particulate filter in a diesel-methanol dual-fuel engine," Energy, Elsevier, vol. 301(C).
    8. Ä°smet Sezer, 2020. "A review study on using diethyl ether in diesel engines: Effects on fuel properties, injection, and combustion characteristics," Energy & Environment, , vol. 31(2), pages 179-214, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marek Waligórski & Maciej Bajerlein & Wojciech Karpiuk & Rafał Smolec & Jakub Pełczyński, 2025. "The Application of Vibroacoustic Mean and Peak-to-Peak Estimates to Assess the Rapidly Changing Thermodynamic Process of Converting Energy Obtained from Various Fuel Compositions Using a CI Engine," Energies, MDPI, vol. 18(5), pages 1-30, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Gang & Wang, Jinhai & Li, Kaijie & Yang, Ke & Han, Weiqiang & Li, Songfeng, 2024. "Effects of isopropanol-butanol-ethanol on the performance, combustion and emission characteristics of a diesel-methanol dual-fuel engine," Renewable Energy, Elsevier, vol. 237(PC).
    2. Wang, Yaodong & Su, Yan & Li, Xiaoping & Wang, Yongzhen & Yang, Tong & Wang, Bo & Sun, Yao, 2024. "Experimental study for the effect of spark ignition on methanol/PODE dual fuel combustion under medium and low loads," Energy, Elsevier, vol. 301(C).
    3. Zhu, Jizhen & Zhou, Dezhi & Yang, Wenming & Qian, Yong & Mao, Yebing & Lu, Xingcai, 2023. "Investigation on the potential of using carbon-free ammonia in large two-stroke marine engines by dual-fuel combustion strategy," Energy, Elsevier, vol. 263(PB).
    4. Kakati, Dipankar & Biswas, Srijit & Banerjee, Rahul, 2021. "Parametric sensitivity analysis of split injection coupled varying methanol induced reactivity strategies on the exergy efficiency enhancement and emission reductions objectives in a biodiesel fuelled," Energy, Elsevier, vol. 225(C).
    5. Li, Jing & Yu, Xiao & Xie, Jingcheng & Yang, Wenming, 2020. "Mitigation of high pressure rise rate by varying IVC timing and EGR rate in an RCCI engine with high premixed fuel ratio," Energy, Elsevier, vol. 192(C).
    6. Kale, Aneesh Vijay & Krishnasamy, Anand, 2023. "Experimental study of homogeneous charge compression ignition combustion in a light-duty diesel engine fueled with isopropanol–gasoline blends," Energy, Elsevier, vol. 264(C).
    7. Masurier, J.-B. & Foucher, F. & Dayma, G. & Dagaut, P., 2015. "Ozone applied to the homogeneous charge compression ignition engine to control alcohol fuels combustion," Applied Energy, Elsevier, vol. 160(C), pages 566-580.
    8. Maria Cristina Cameretti & Roberta De Robbio & Ezio Mancaruso & Marco Palomba, 2022. "CFD Study of Dual Fuel Combustion in a Research Diesel Engine Fueled by Hydrogen," Energies, MDPI, vol. 15(15), pages 1-21, July.
    9. Muthukumar, K. & Kasiraman, G., 2024. "Utilization of fuel energy from single-use Low-density polyethylene plastic waste on CI engine with hydrogen enrichment – An experimental study," Energy, Elsevier, vol. 289(C).
    10. Leszek Chybowski & Wojciech Wójcik & Marcin Szczepanek, 2025. "Evaluation of Rheological and Lubrication Properties of Selected Alcohol Fuels," Energies, MDPI, vol. 18(5), pages 1-18, February.
    11. Liu, Shang & Lin, Zhelong & Zhang, Hao & Lei, Nuo & Qi, Yunliang & Wang, Zhi, 2023. "Impact of ammonia addition on knock resistance and combustion performance in a gasoline engine with high compression ratio," Energy, Elsevier, vol. 262(PA).
    12. Li, Zilong & Zhang, Yaoyuan & Huang, Guan & Zhao, Wenbin & He, Zhuoyao & Qian, Yong & Lu, Xingcai, 2020. "Control of intake boundary conditions for enabling clean combustion in variable engine conditions under intelligent charge compression ignition (ICCI) mode," Applied Energy, Elsevier, vol. 274(C).
    13. Pachiannan, Tamilselvan & Zhong, Wenjun & Rajkumar, Sundararajan & He, Zhixia & Leng, Xianying & Wang, Qian, 2019. "A literature review of fuel effects on performance and emission characteristics of low-temperature combustion strategies," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    14. Chakrapani Nagappan Kowthaman & S. M. Ashrafur Rahman & I. M. R. Fattah, 2023. "Exploring the Potential of Lignocellulosic Biomass-Derived Polyoxymethylene Dimethyl Ether as a Sustainable Fuel for Internal Combustion Engines," Energies, MDPI, vol. 16(12), pages 1-18, June.
    15. Kale, Aneesh Vijay & Krishnasamy, Anand, 2023. "Numerical investigation on selecting appropriate piston bowl geometry and compression ratio for gasoline-fuelled homogeneous charge compression ignited light-duty diesel engine," Energy, Elsevier, vol. 282(C).
    16. Pinto, G.M. & da Costa, R.B.R. & de Souza, T.A.Z. & Rosa, A.J.A.C. & Raats, O.O. & Roque, L.F.A. & Frez, G.V. & Coronado, C.J.R., 2023. "Experimental investigation of performance and emissions of a CI engine operating with HVO and farnesane in dual-fuel mode with natural gas and biogas," Energy, Elsevier, vol. 277(C).
    17. Ding, Botao & Wang, Ying & Bai, Yuanqi & Xie, Manyao & Chen, Jinge, 2024. "Effects of PODE substitution rate and fuel injection timing on combustion, emission characteristic and energy balance in PODE-gasoline dual direct-injection engine," Energy, Elsevier, vol. 294(C).
    18. Zhong, Yingzi & Han, Weiqiang & Jin, Chao & Tian, Xiaocong & Liu, Haifeng, 2022. "Study on effects of the hydroxyl group position and carbon chain length on combustion and emission characteristics of Reactivity Controlled Compression Ignition (RCCI) engine fueled with low-carbon st," Energy, Elsevier, vol. 239(PC).
    19. Han, Dong & Wang, Chunhai & Duan, Yaozong & Tian, Zhisong & Huang, Zhen, 2014. "An experimental study of injection and spray characteristics of diesel and gasoline blends on a common rail injection system," Energy, Elsevier, vol. 75(C), pages 513-519.
    20. Costa, M. & Di Blasio, G. & Prati, M.V. & Costagliola, M.A. & Cirillo, D. & La Villetta, M. & Caputo, C. & Martoriello, G., 2020. "Multi-objective optimization of a syngas powered reciprocating engine equipping a combined heat and power unit," Applied Energy, Elsevier, vol. 275(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:312:y:2024:i:c:s0360544224034376. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.