IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v308y2024ics036054422402632x.html
   My bibliography  Save this article

Effects of hydrogen volume fraction, air fuel ratio, and compression ratio on combustion and emission characteristics of an SI ammonia-hydrogen engine

Author

Listed:
  • Liang, Yuwei
  • Wang, Zhongjun
  • Dong, Dongsheng
  • Wei, Wenwen
  • Zhang, Hanyuyang
  • Li, Gesheng
  • Zhang, Zunhua

Abstract

An effective approach to reducing greenhouse gas emissions is to utilize low/zero carbon fuels. This study simulated the combustion of a marine spark ignition (SI) ammonia-hydrogen engine, focusing on the effects of hydrogen volume fraction (XH2), air fuel ratio (λ), and compression ratio (CR) on the combustion and emission characteristics. The pathways of nitrogen-based pollutants such as NH3, NO, and N2O were explained. The results show that increasing XH2 improves Pmax, heat release rate, thermal efficiency, and power. Regarding emission characteristics, when XH2 rises, NH3 emissions drop; NOx emissions remain almost constant at λ ≤ 1 (2100 ppm at λ = 1) and considerably increase at λ > 1, peaking at 5245 ppm. Moreover, as CR rises, the engine power and thermal efficiency increase, NOx emissions decrease by 10%, and N2O emissions are below 20 ppm. Furthermore, chemical kinetic analysis shows that NO comes from N and N2, diffuses from the flame front toward the center in the cylinder under λ = 1.2. And NO comes from HNO and is generated in the flame front and the center under λ = 0.9, respectively. N2O is produced by NH and NH2 and is only generated in the flame front.

Suggested Citation

  • Liang, Yuwei & Wang, Zhongjun & Dong, Dongsheng & Wei, Wenwen & Zhang, Hanyuyang & Li, Gesheng & Zhang, Zunhua, 2024. "Effects of hydrogen volume fraction, air fuel ratio, and compression ratio on combustion and emission characteristics of an SI ammonia-hydrogen engine," Energy, Elsevier, vol. 308(C).
  • Handle: RePEc:eee:energy:v:308:y:2024:i:c:s036054422402632x
    DOI: 10.1016/j.energy.2024.132858
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422402632X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.132858?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhu, Jizhen & Zhou, Dezhi & Yang, Wenming & Qian, Yong & Mao, Yebing & Lu, Xingcai, 2023. "Investigation on the potential of using carbon-free ammonia in large two-stroke marine engines by dual-fuel combustion strategy," Energy, Elsevier, vol. 263(PB).
    2. Wei, Wenwen & Li, Gesheng & Zhang, Zunhua & Long, Yanxiang & Zhang, Hanyuyang & Huang, Yong & Zhou, Mengni & Wei, Yi, 2023. "Effects of ammonia addition on the performance and emissions for a spark-ignition marine natural gas engine," Energy, Elsevier, vol. 272(C).
    3. Voglar, J. & Teržan, J. & Kroflič, A. & Huš, M. & Likozar, B., 2023. "Mechanistic modelling of catalytic NOX reduction reactions after hydrogen or ammonia combustion on multiple scales," Renewable and Sustainable Energy Reviews, Elsevier, vol. 186(C).
    4. Li, Jun & Huang, Hongyu & Kobayashi, Noriyuki & Wang, Chenguang & Yuan, Haoran, 2017. "Numerical study on laminar burning velocity and ignition delay time of ammonia flame with hydrogen addition," Energy, Elsevier, vol. 126(C), pages 796-809.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shi, Guodong & Li, Pengfei & Li, Kesheng & Hu, Fan & Liu, Qian & Zhou, Haoyu & Liu, Zhaohui, 2023. "Insight into NOx formation characteristics of ammonia oxidation in N2 and H2O atmospheres," Energy, Elsevier, vol. 285(C).
    2. Kumar, Laveet & Sleiti, Ahmad K., 2024. "Systematic review on ammonia as a sustainable fuel for combustion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
    3. Wei, Wenwen & Li, Gesheng & Zhang, Zunhua & Long, Yanxiang & Zhang, Hanyuyang & Huang, Yong & Zhou, Mengni & Wei, Yi, 2023. "Effects of ammonia addition on the performance and emissions for a spark-ignition marine natural gas engine," Energy, Elsevier, vol. 272(C).
    4. Rimkus, Alfredas & Matijošius, Jonas & Bogdevičius, Marijonas & Bereczky, Ákos & Török, Ádám, 2018. "An investigation of the efficiency of using O2 and H2 (hydrooxile gas -HHO) gas additives in a ci engine operating on diesel fuel and biodiesel," Energy, Elsevier, vol. 152(C), pages 640-651.
    5. Wang, Shuofeng & Sun, Yu & Yang, Jinxin & Wang, Huaiyu, 2024. "Effect of excess air ratio and ignition timing on the combustion and emission characteristics of the ammonia-hydrogen Wankel rotary engine," Energy, Elsevier, vol. 302(C).
    6. Li, Yunlong & Feng, Lai & Chen, Wei, 2024. "Chemical effect of H2 on NH3 combustion in an O2 environment via molecular dynamics simulations," Energy, Elsevier, vol. 308(C).
    7. Zhang, Yiran & Fu, Li & Wang, Sihao & Ning, Hongbo, 2024. "Theoretical reaction kinetics predictions for acetone and ketene with NH2 radicals: Implications on acetone/ammonia kinetic modeling," Energy, Elsevier, vol. 310(C).
    8. Liang, He & Yan, Xingqing & Shi, Enhua & Wang, Xinfei & Qi, Chang & Ding, Jianfei & Zhang, Lianzhuo & Chen, Lei & Lv, Xianshu & Yu, Jianliang, 2024. "Effect of hydrogen blending on ammonia/air explosion characteristics under wide equivalence ratio," Energy, Elsevier, vol. 297(C).
    9. Ye, Lan & Zhou, Rongyin & Chen, Weihao & Gong, Shiqi & Zhou, Xinyi & Li, Jing, 2024. "Effect of in-cylinder flow on the combustion and flame propagation characteristics of an ammonia/diesel dual-fuel engine," Energy, Elsevier, vol. 309(C).
    10. Liu, Xing & Wang, Ying & Bai, Yuanqi & Yang, Wenxu, 2023. "Development of reduced and optimized mechanism for ammonia/ hydrogen mixture based on genetic algorithm," Energy, Elsevier, vol. 270(C).
    11. Ahmed T. Khalil & Dimitris M. Manias & Efstathios-Al. Tingas & Dimitrios C. Kyritsis & Dimitris A. Goussis, 2019. "Algorithmic Analysis of Chemical Dynamics of the Autoignition of NH 3 –H 2 O 2 /Air Mixtures," Energies, MDPI, vol. 12(23), pages 1-14, November.
    12. Chen, Danan & Li, Jun & Li, Xing & Deng, Lisheng & He, Zhaohong & Huang, Hongyu & Kobayashi, Noriyuki, 2023. "Study on combustion characteristics of hydrogen addition on ammonia flame at a porous burner," Energy, Elsevier, vol. 263(PA).
    13. Lu, Zhen & Ye, Jianpeng & Gui, Yong & Lu, Tianlong & Shi, Lei & An, Yanzhao & Wang, Tianyou, 2023. "Numerical study of the compression ignition of ammonia in a two-stroke marine engine by using HTCGR strategy," Energy, Elsevier, vol. 276(C).
    14. Jinyi Hu & Yongbao Liu & Xing He & Jianfeng Zhao & Shaojun Xia, 2024. "Application of NH 3 Fuel in Power Equipment and Its Impact on NO x Emissions," Energies, MDPI, vol. 17(12), pages 1-39, June.
    15. Yan, Beibei & Wu, Zhaoting & Zhou, Shengquan & Lv, Jingwen & Liu, Xiaoyun & Wu, Wenzhu & Chen, Guanyi, 2024. "A critical review of NH3–H2 combustion mechanisms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 196(C).
    16. Shin, Jisoo & Park, Sungwook, 2024. "Numerical analysis and optimization of combustion and emissions in an ammonia-diesel dual-fuel engine using an ammonia direct injection strategy," Energy, Elsevier, vol. 289(C).
    17. Xu, Leilei & Xu, Shijie & Bai, Xue-Song & Repo, Juho Aleksi & Hautala, Saana & Hyvönen, Jari, 2023. "Performance and emission characteristics of an ammonia/diesel dual-fuel marine engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    18. Yin, Bingqian & Lu, Zhen & Shi, Lei & Lu, Tianlong & Ye, Jianpeng & Ma, Junqing & Wang, Tianyou, 2024. "Numerical simulation of a spark ignition ammonia marine engine for future ship power applications," Energy, Elsevier, vol. 302(C).
    19. Sagin, Sergii V. & Sagin, Sergii S. & Fomin, Oleksij & Gaichenia, Oleksandr & Zablotskyi, Yurii & Píštěk, Václav & Kučera, Pavel, 2024. "Use of biofuels in marine diesel engines for sustainable and safe maritime transport," Renewable Energy, Elsevier, vol. 224(C).
    20. Li, Yanchao & Bi, Mingshu & Li, Bei & Zhou, Yonghao & Huang, Lei & Gao, Wei, 2018. "Explosion hazard evaluation of renewable hydrogen/ammonia/air fuels," Energy, Elsevier, vol. 159(C), pages 252-263.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:308:y:2024:i:c:s036054422402632x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.