Big data driven predictive production planning for energy-intensive manufacturing industries
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2020.118320
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Ahmad, Tanveer & Chen, Huanxin, 2019. "Deep learning for multi-scale smart energy forecasting," Energy, Elsevier, vol. 175(C), pages 98-112.
- Xiao, Qinge & Li, Congbo & Tang, Ying & Li, Lingling & Li, Li, 2019. "A knowledge-driven method of adaptively optimizing process parameters for energy efficient turning," Energy, Elsevier, vol. 166(C), pages 142-156.
- Hongcheng Li & Haidong Yang & Bixia Yang & Chengjiu Zhu & Sihua Yin, 2018. "Modelling and simulation of energy consumption of ceramic production chains with mixed flows using hybrid Petri nets," International Journal of Production Research, Taylor & Francis Journals, vol. 56(8), pages 3007-3024, April.
- Peng, Lu & Liu, Shan & Liu, Rui & Wang, Lin, 2018. "Effective long short-term memory with differential evolution algorithm for electricity price prediction," Energy, Elsevier, vol. 162(C), pages 1301-1314.
- Bedi, Jatin & Toshniwal, Durga, 2019. "Deep learning framework to forecast electricity demand," Applied Energy, Elsevier, vol. 238(C), pages 1312-1326.
- Chang, Zihan & Zhang, Yang & Chen, Wenbo, 2019. "Electricity price prediction based on hybrid model of adam optimized LSTM neural network and wavelet transform," Energy, Elsevier, vol. 187(C).
- Lee, Yi-Shian & Tong, Lee-Ing, 2012. "Forecasting nonlinear time series of energy consumption using a hybrid dynamic model," Applied Energy, Elsevier, vol. 94(C), pages 251-256.
- Zhou, Min & Wang, Bo & Watada, Junzo, 2019. "Deep learning-based rolling horizon unit commitment under hybrid uncertainties," Energy, Elsevier, vol. 186(C).
- Kim, Tae-Young & Cho, Sung-Bae, 2019. "Predicting residential energy consumption using CNN-LSTM neural networks," Energy, Elsevier, vol. 182(C), pages 72-81.
- Xiao, Qinge & Li, Congbo & Tang, Ying & Pan, Jian & Yu, Jun & Chen, Xingzheng, 2019. "Multi-component energy modeling and optimization for sustainable dry gear hobbing," Energy, Elsevier, vol. 187(C).
- Wen, Lulu & Zhou, Kaile & Yang, Shanlin & Lu, Xinhui, 2019. "Optimal load dispatch of community microgrid with deep learning based solar power and load forecasting," Energy, Elsevier, vol. 171(C), pages 1053-1065.
- Rahman, Aowabin & Srikumar, Vivek & Smith, Amanda D., 2018. "Predicting electricity consumption for commercial and residential buildings using deep recurrent neural networks," Applied Energy, Elsevier, vol. 212(C), pages 372-385.
- Yin, Xiuxing & Zhao, Xiaowei, 2019. "Big data driven multi-objective predictions for offshore wind farm based on machine learning algorithms," Energy, Elsevier, vol. 186(C).
- Han, Li & Jing, Huitian & Zhang, Rongchang & Gao, Zhiyu, 2019. "Wind power forecast based on improved Long Short Term Memory network," Energy, Elsevier, vol. 189(C).
- Cai, Wei & Liu, Fei & Zhang, Hua & Liu, Peiji & Tuo, Junbo, 2017. "Development of dynamic energy benchmark for mass production in machining systems for energy management and energy-efficiency improvement," Applied Energy, Elsevier, vol. 202(C), pages 715-725.
- Gao, Mingming & Li, Jianjing & Hong, Feng & Long, Dongteng, 2019. "Day-ahead power forecasting in a large-scale photovoltaic plant based on weather classification using LSTM," Energy, Elsevier, vol. 187(C).
- Sun, Wenqiang & Wang, Qiang & Zhou, Yue & Wu, Jianzhong, 2020. "Material and energy flows of the iron and steel industry: Status quo, challenges and perspectives," Applied Energy, Elsevier, vol. 268(C).
- Zhong, Ray Y. & Huang, George Q. & Lan, Shulin & Dai, Q.Y. & Chen, Xu & Zhang, T., 2015. "A big data approach for logistics trajectory discovery from RFID-enabled production data," International Journal of Production Economics, Elsevier, vol. 165(C), pages 260-272.
- Zhou, Kaile & Fu, Chao & Yang, Shanlin, 2016. "Big data driven smart energy management: From big data to big insights," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 215-225.
- Afrasiabi, Mousa & Mohammadi, Mohammad & Rastegar, Mohammad & Kargarian, Amin, 2019. "Multi-agent microgrid energy management based on deep learning forecaster," Energy, Elsevier, vol. 186(C).
- Qiao, Weibiao & Yang, Zhe, 2020. "Forecast the electricity price of U.S. using a wavelet transform-based hybrid model," Energy, Elsevier, vol. 193(C).
- Liu, Weipeng & Peng, Tao & Tang, Renzhong & Umeda, Yasushi & Hu, Luoke, 2020. "An Internet of Things-enabled model-based approach to improving the energy efficiency of aluminum die casting processes," Energy, Elsevier, vol. 202(C).
- Wang, Jian Qi & Du, Yu & Wang, Jing, 2020. "LSTM based long-term energy consumption prediction with periodicity," Energy, Elsevier, vol. 197(C).
- Sun, Wenqiang & Wang, Zihao & Wang, Qiang, 2020. "Hybrid event-, mechanism- and data-driven prediction of blast furnace gas generation," Energy, Elsevier, vol. 199(C).
- David Roubaud & Rameshwar Dubey & Cyril Foropon & Angappa Gunasekaran & Stephen J. Childe & Zongwei Luo & Fosso Wamba Samuel, 2018. "Examining the role of big data and predictive analytics on collaborative performance in context to sustainable consumption and production behaviour," Post-Print hal-02051276, HAL.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Sun, Jingchao & Na, Hongming & Yan, Tianyi & Che, Zichang & Qiu, Ziyang & Yuan, Yuxing & Li, Yingnan & Du, Tao & Song, Yanli & Fang, Xin, 2022. "Cost-benefit assessment of manufacturing system using comprehensive value flow analysis," Applied Energy, Elsevier, vol. 310(C).
- Ma, Shuaiyin & Huang, Yuming & Liu, Yang & Kong, Xianguang & Yin, Lei & Chen, Gaige, 2023. "Edge-cloud cooperation-driven smart and sustainable production for energy-intensive manufacturing industries," Applied Energy, Elsevier, vol. 337(C).
- Elsisi, Mahmoud & Amer, Mohammed & Dababat, Alya’ & Su, Chun-Lien, 2023. "A comprehensive review of machine learning and IoT solutions for demand side energy management, conservation, and resilient operation," Energy, Elsevier, vol. 281(C).
- Yang, Jiaojiao & Sun, Zeyi & Hu, Wenqing & Steinmeister, Louis, 2022. "Joint control of manufacturing and onsite microgrid system via novel neural-network integrated reinforcement learning algorithms," Applied Energy, Elsevier, vol. 315(C).
- Ma, Shuaiyin & Huang, Yuming & Liu, Yang & Liu, Haizhou & Chen, Yanping & Wang, Jin & Xu, Jun, 2023. "Big data-driven correlation analysis based on clustering for energy-intensive manufacturing industries," Applied Energy, Elsevier, vol. 349(C).
- Ma, Shuaiyin & Ding, Wei & Liu, Yang & Ren, Shan & Yang, Haidong, 2022. "Digital twin and big data-driven sustainable smart manufacturing based on information management systems for energy-intensive industries," Applied Energy, Elsevier, vol. 326(C).
- Ali, Aliyuda, 2021. "Data-driven based machine learning models for predicting the deliverability of underground natural gas storage in salt caverns," Energy, Elsevier, vol. 229(C).
- Mengmeng Xu & Ruipeng Tan, 2024. "Digital economy as a catalyst for low-carbon transformation in China: new analytical insights," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-14, December.
- Xian, Huafeng & Che, Jinxing, 2022. "Multi-space collaboration framework based optimal model selection for power load forecasting," Applied Energy, Elsevier, vol. 314(C).
- Cen, Xiao & Chen, Zengliang & Chen, Haifeng & Ding, Chen & Ding, Bo & Li, Fei & Lou, Fangwei & Zhu, Zhenyu & Zhang, Hongyu & Hong, Bingyuan, 2024. "User repurchase behavior prediction for integrated energy supply stations based on the user profiling method," Energy, Elsevier, vol. 286(C).
- Liu, Shuhan & Sun, Wenqiang, 2023. "Attention mechanism-aided data- and knowledge-driven soft sensors for predicting blast furnace gas generation," Energy, Elsevier, vol. 262(PA).
- Liu, Gang & Wang, Kun & Hao, Xiaochen & Zhang, Zhipeng & Zhao, Yantao & Xu, Qingquan, 2022. "SA-LSTMs: A new advance prediction method of energy consumption in cement raw materials grinding system," Energy, Elsevier, vol. 241(C).
- Mohamed Habib Jabeur & Sonia Mahjoub & Cyril Toublanc, 2023. "Sustainable Production Scheduling with On-Site Intermittent Renewable Energy and Demand-Side Management: A Feed-Animal Case Study," Energies, MDPI, vol. 16(14), pages 1-24, July.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Bilgili, Mehmet & Pinar, Engin, 2023. "Gross electricity consumption forecasting using LSTM and SARIMA approaches: A case study of Türkiye," Energy, Elsevier, vol. 284(C).
- Richter, Lucas & Lehna, Malte & Marchand, Sophie & Scholz, Christoph & Dreher, Alexander & Klaiber, Stefan & Lenk, Steve, 2022. "Artificial Intelligence for Electricity Supply Chain automation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
- Ma, Shuaiyin & Ding, Wei & Liu, Yang & Ren, Shan & Yang, Haidong, 2022. "Digital twin and big data-driven sustainable smart manufacturing based on information management systems for energy-intensive industries," Applied Energy, Elsevier, vol. 326(C).
- Lu, Yakai & Tian, Zhe & Zhou, Ruoyu & Liu, Wenjing, 2021. "A general transfer learning-based framework for thermal load prediction in regional energy system," Energy, Elsevier, vol. 217(C).
- Ibrahim, Muhammad Sohail & Dong, Wei & Yang, Qiang, 2020. "Machine learning driven smart electric power systems: Current trends and new perspectives," Applied Energy, Elsevier, vol. 272(C).
- Hyunsoo Kim & Jiseok Jeong & Changwan Kim, 2022. "Daily Peak-Electricity-Demand Forecasting Based on Residual Long Short-Term Network," Mathematics, MDPI, vol. 10(23), pages 1-17, November.
- Lin, Zi & Liu, Xiaolei & Lao, Liyun & Liu, Hengxu, 2020. "Prediction of two-phase flow patterns in upward inclined pipes via deep learning," Energy, Elsevier, vol. 210(C).
- Yang, Haolin & Schell, Kristen R., 2022. "GHTnet: Tri-Branch deep learning network for real-time electricity price forecasting," Energy, Elsevier, vol. 238(PC).
- Ahmad, Tanveer & Huanxin, Chen & Zhang, Dongdong & Zhang, Hongcai, 2020. "Smart energy forecasting strategy with four machine learning models for climate-sensitive and non-climate sensitive conditions," Energy, Elsevier, vol. 198(C).
- Gabrielli, Paolo & Wüthrich, Moritz & Blume, Steffen & Sansavini, Giovanni, 2022. "Data-driven modeling for long-term electricity price forecasting," Energy, Elsevier, vol. 244(PB).
- Jun Hao & Xiaolei Sun & Qianqian Feng, 2020. "A Novel Ensemble Approach for the Forecasting of Energy Demand Based on the Artificial Bee Colony Algorithm," Energies, MDPI, vol. 13(3), pages 1-25, January.
- Ghimire, Sujan & Deo, Ravinesh C. & Casillas-Pérez, David & Salcedo-Sanz, Sancho, 2024. "Two-step deep learning framework with error compensation technique for short-term, half-hourly electricity price forecasting," Applied Energy, Elsevier, vol. 353(PA).
- Liu, Gang & Wang, Kun & Hao, Xiaochen & Zhang, Zhipeng & Zhao, Yantao & Xu, Qingquan, 2022. "SA-LSTMs: A new advance prediction method of energy consumption in cement raw materials grinding system," Energy, Elsevier, vol. 241(C).
- Wang, Jun & Cao, Junxing & Yuan, Shan & Cheng, Ming, 2021. "Short-term forecasting of natural gas prices by using a novel hybrid method based on a combination of the CEEMDAN-SE-and the PSO-ALS-optimized GRU network," Energy, Elsevier, vol. 233(C).
- Jason Runge & Radu Zmeureanu, 2021. "A Review of Deep Learning Techniques for Forecasting Energy Use in Buildings," Energies, MDPI, vol. 14(3), pages 1-26, January.
- Zang, Haixiang & Xu, Ruiqi & Cheng, Lilin & Ding, Tao & Liu, Ling & Wei, Zhinong & Sun, Guoqiang, 2021. "Residential load forecasting based on LSTM fusing self-attention mechanism with pooling," Energy, Elsevier, vol. 229(C).
- Ding, Jia & Zhao, Yuxuan & Jin, Junyang, 2023. "Forecasting natural gas consumption with multiple seasonal patterns," Applied Energy, Elsevier, vol. 337(C).
- Liu, Kailei & Cheng, Jinhua & Yi, Jiahui, 2022. "Copper price forecasted by hybrid neural network with Bayesian Optimization and wavelet transform," Resources Policy, Elsevier, vol. 75(C).
- Salam, Abdulwahed & El Hibaoui, Abdelaaziz, 2021. "Energy consumption prediction model with deep inception residual network inspiration and LSTM," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 97-109.
- Miseta, Tamás & Fodor, Attila & Vathy-Fogarassy, Ágnes, 2022. "Energy trading strategy for storage-based renewable power plants," Energy, Elsevier, vol. 250(C).
More about this item
Keywords
Energy-intensive manufacturing industries; Predictive production planning; Big data; Data processing and mining; Long short-term memory;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:211:y:2020:i:c:s0360544220314274. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.