IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v326y2022ics0306261922012430.html
   My bibliography  Save this article

Digital twin and big data-driven sustainable smart manufacturing based on information management systems for energy-intensive industries

Author

Listed:
  • Ma, Shuaiyin
  • Ding, Wei
  • Liu, Yang
  • Ren, Shan
  • Yang, Haidong

Abstract

Internet of Things (IoT) technology, which has made manufacturing processes more smart, efficient and sustainable, has received increasing attention from the industry and academia. As one of the most important applications for IoT, sustainable smart manufacturing enables lower cost, higher productivity and flexibility, better quality and sustainability during the product lifecycle management. Over the years, numerous enterprises have promoted the implementation of both sustainable and smart manufacturing. In the Industry 4.0 context, a ‘digital twin’ is widely used to achieve smart manufacturing, although this approach often ignores sustainability. This study aims to simultaneously consider digital twin and big data technologies to propose a sustainable smart manufacturing strategy based on information management systems for energy-intensive industries (EIIs) from the product lifecycle perspective. The integration of digital twin and big data provides key technologies for data acquisition in energy-intensive production environments, prediction and mining in uncertain environments as well as real-time control in complex working conditions. Moreover, a digital twin-driven operation mechanism and an overall framework of big data cleansing and integration are designed to explain and illustrate sustainable smart manufacturing. Two case studies from Southern and Northern China demonstrate the efficacy of the strategy, with the results showing that Companies A and B achieved the goals of energy saving and cost reduction after implementing the proposed strategy. By applying an energy management system, the unit energy consumption and energy cost of production in Company A decreased by at least 3%. In addition, the ‘cradle-to-gate’ lifecycle big data analysis indicates that the costs of environmental protection in Company B decrease significantly. Finally, the effectiveness of the proposed strategy and some managerial insights for EIIs in China are analysed and discussed.

Suggested Citation

  • Ma, Shuaiyin & Ding, Wei & Liu, Yang & Ren, Shan & Yang, Haidong, 2022. "Digital twin and big data-driven sustainable smart manufacturing based on information management systems for energy-intensive industries," Applied Energy, Elsevier, vol. 326(C).
  • Handle: RePEc:eee:appene:v:326:y:2022:i:c:s0306261922012430
    DOI: 10.1016/j.apenergy.2022.119986
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922012430
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.119986?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hongcheng Li & Haidong Yang & Bixia Yang & Chengjiu Zhu & Sihua Yin, 2018. "Modelling and simulation of energy consumption of ceramic production chains with mixed flows using hybrid Petri nets," International Journal of Production Research, Taylor & Francis Journals, vol. 56(8), pages 3007-3024, April.
    2. Liu, Shuhan & Sun, Wenqiang, 2023. "Attention mechanism-aided data- and knowledge-driven soft sensors for predicting blast furnace gas generation," Energy, Elsevier, vol. 262(PA).
    3. Cai, Wei & Wang, Lianguo & Li, Li & Xie, Jun & Jia, Shun & Zhang, Xugang & Jiang, Zhigang & Lai, Kee-hung, 2022. "A review on methods of energy performance improvement towards sustainable manufacturing from perspectives of energy monitoring, evaluation, optimization and benchmarking," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    4. Lin, Boqiang & Tan, Ruipeng, 2017. "Sustainable development of China's energy intensive industries: From the aspect of carbon dioxide emissions reduction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 386-394.
    5. Ma, Shuaiyin & Zhang, Yingfeng & Lv, Jingxiang & Ge, Yuntian & Yang, Haidong & Li, Lin, 2020. "Big data driven predictive production planning for energy-intensive manufacturing industries," Energy, Elsevier, vol. 211(C).
    6. Sun, Wenqiang & Wang, Zihao & Wang, Qiang, 2020. "Hybrid event-, mechanism- and data-driven prediction of blast furnace gas generation," Energy, Elsevier, vol. 199(C).
    7. Wang, Yong & Li, Lin, 2014. "Time-of-use based electricity cost of manufacturing systems: Modeling and monotonicity analysis," International Journal of Production Economics, Elsevier, vol. 156(C), pages 246-259.
    8. Ilkyeong Moon & Won Young Yun & Biswajit Sarkar, 2022. "Effects of variable setup cost, reliability, and production costs under controlled carbon emissions in a reliable production system," European Journal of Industrial Engineering, Inderscience Enterprises Ltd, vol. 16(4), pages 371-397.
    9. Zhang, Hanxin & Sun, Wenqiang & Li, Weidong & Ma, Guangyu, 2022. "A carbon flow tracing and carbon accounting method for exploring CO2 emissions of the iron and steel industry: An integrated material–energy–carbon hub," Applied Energy, Elsevier, vol. 309(C).
    10. Ouyang, Jianjun & Ju, Peng, 2017. "The choice of energy saving modes for an energy-intensive manufacturer under non-coordination and coordination scenarios," Energy, Elsevier, vol. 126(C), pages 733-745.
    11. Yun, Lingxiang & Li, Lin & Ma, Shuaiyin, 2022. "Demand response for manufacturing systems considering the implications of fast-charging battery powered material handling equipment," Applied Energy, Elsevier, vol. 310(C).
    12. Chang, Ching-Ter & Lee, Hsing-Chen, 2016. "Taiwan's renewable energy strategy and energy-intensive industrial policy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 456-465.
    13. Li, Li & Wang, Jianjun & Tan, Zhongfu & Ge, Xinquan & Zhang, Jian & Yun, Xiaozhe, 2014. "Policies for eliminating low-efficiency production capacities and improving energy efficiency of energy-intensive industries in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 312-326.
    14. Sun, Wenqiang & Wang, Qiang & Zhou, Yue & Wu, Jianzhong, 2020. "Material and energy flows of the iron and steel industry: Status quo, challenges and perspectives," Applied Energy, Elsevier, vol. 268(C).
    15. Fei Tao & Fangyuan Sui & Ang Liu & Qinglin Qi & Meng Zhang & Boyang Song & Zirong Guo & Stephen C.-Y. Lu & A. Y. C. Nee, 2019. "Digital twin-driven product design framework," International Journal of Production Research, Taylor & Francis Journals, vol. 57(12), pages 3935-3953, June.
    16. Xu, Jun & Wang, Jun-Qiang & Liu, Zhixin, 2022. "Parallel batch scheduling: Impact of increasing machine capacity," Omega, Elsevier, vol. 108(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Jiayang & Wang, Qiang & Sun, Wenqiang, 2023. "Quantifying flexibility provisions of the ladle furnace refining process as cuttable loads in the iron and steel industry," Applied Energy, Elsevier, vol. 342(C).
    2. Ma, Shuaiyin & Huang, Yuming & Liu, Yang & Kong, Xianguang & Yin, Lei & Chen, Gaige, 2023. "Edge-cloud cooperation-driven smart and sustainable production for energy-intensive manufacturing industries," Applied Energy, Elsevier, vol. 337(C).
    3. Marcin Relich, 2023. "Predictive and Prescriptive Analytics in Identifying Opportunities for Improving Sustainable Manufacturing," Sustainability, MDPI, vol. 15(9), pages 1-14, May.
    4. Lv, Zhihan & Cheng, Chen & Lv, Haibin, 2023. "Digital twins for secure thermal energy storage in building," Applied Energy, Elsevier, vol. 338(C).
    5. Ma, Shuaiyin & Huang, Yuming & Liu, Yang & Liu, Haizhou & Chen, Yanping & Wang, Jin & Xu, Jun, 2023. "Big data-driven correlation analysis based on clustering for energy-intensive manufacturing industries," Applied Energy, Elsevier, vol. 349(C).
    6. Taghizadeh-Hesary, Farhad & Dong, Kangyin & Zhao, Congyu & Phoumin, Han, 2023. "Can financial and economic means accelerate renewable energy growth in the climate change era? The case of China," Economic Analysis and Policy, Elsevier, vol. 78(C), pages 730-743.
    7. Marcin Relich, 2023. "A Data-Driven Approach for Improving Sustainable Product Development," Sustainability, MDPI, vol. 15(8), pages 1-18, April.
    8. Larisa Vazhenina & Elena Magaril & Igor Mayburov, 2023. "Digital Management of Resource Efficiency of Fuel and Energy Companies in a Circular Economy," Energies, MDPI, vol. 16(8), pages 1-21, April.
    9. Ai, Hongshan & Mangla, Sachin Kumar & Song, Malin & Tan, Xiaoqing & Zhang, Shangfeng, 2024. "Technology-enabled business model innovation and carbon emission reduction: Evidence from a place-based policy in China," Technovation, Elsevier, vol. 134(C).
    10. Song, Houde & Liu, Xiaojing & Song, Meiqi, 2023. "Comparative study of data-driven and model-driven approaches in prediction of nuclear power plants operating parameters," Applied Energy, Elsevier, vol. 341(C).
    11. Cheng, Han & Kong, Xianguang & Wang, Qibin & Ma, Hongbo & Yang, Shengkang & Xu, Kun, 2023. "Remaining useful life prediction combined dynamic model with transfer learning under insufficient degradation data," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    12. Yunshandan Wu & Wenfu Wu & Kai Chen & Ji Zhang & Zhe Liu & Yaqiu Zhang, 2023. "Progress and Prospective in the Development of Stored Grain Ecosystems in China: From Composition, Structure, and Smart Construction to Wisdom Methodology," Agriculture, MDPI, vol. 13(9), pages 1-13, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Shuaiyin & Huang, Yuming & Liu, Yang & Kong, Xianguang & Yin, Lei & Chen, Gaige, 2023. "Edge-cloud cooperation-driven smart and sustainable production for energy-intensive manufacturing industries," Applied Energy, Elsevier, vol. 337(C).
    2. Liu, Shuhan & Sun, Wenqiang, 2023. "Attention mechanism-aided data- and knowledge-driven soft sensors for predicting blast furnace gas generation," Energy, Elsevier, vol. 262(PA).
    3. Yuan, Yuxing & Na, Hongming & Chen, Chuang & Qiu, Ziyang & Sun, Jingchao & Zhang, Lei & Du, Tao & Yang, Yuhang, 2024. "Status, challenges, and prospects of energy efficiency improvement methods in steel production: A multi-perspective review," Energy, Elsevier, vol. 304(C).
    4. Ma, Shuaiyin & Huang, Yuming & Liu, Yang & Liu, Haizhou & Chen, Yanping & Wang, Jin & Xu, Jun, 2023. "Big data-driven correlation analysis based on clustering for energy-intensive manufacturing industries," Applied Energy, Elsevier, vol. 349(C).
    5. Sun, Jingchao & Na, Hongming & Yan, Tianyi & Che, Zichang & Qiu, Ziyang & Yuan, Yuxing & Li, Yingnan & Du, Tao & Song, Yanli & Fang, Xin, 2022. "Cost-benefit assessment of manufacturing system using comprehensive value flow analysis," Applied Energy, Elsevier, vol. 310(C).
    6. Yang, Jiaojiao & Sun, Zeyi & Hu, Wenqing & Steinmeister, Louis, 2022. "Joint control of manufacturing and onsite microgrid system via novel neural-network integrated reinforcement learning algorithms," Applied Energy, Elsevier, vol. 315(C).
    7. Ma, Shuaiyin & Zhang, Yingfeng & Lv, Jingxiang & Ge, Yuntian & Yang, Haidong & Li, Lin, 2020. "Big data driven predictive production planning for energy-intensive manufacturing industries," Energy, Elsevier, vol. 211(C).
    8. Qiu, Ziyang & Sun, Jingchao & Du, Tao & Na, Hongming & Zhang, Lei & Yuan, Yuxing & Wang, Yisong, 2024. "Impact of hydrogen metallurgy on the current iron and steel industry: A comprehensive material-exergy-emission flow analysis," Applied Energy, Elsevier, vol. 356(C).
    9. Wang, Jiayang & Wang, Qiang & Sun, Wenqiang, 2023. "Quantifying flexibility provisions of the ladle furnace refining process as cuttable loads in the iron and steel industry," Applied Energy, Elsevier, vol. 342(C).
    10. Jiang, Sheng-Long & Wang, Meihong & Bogle, I. David L., 2023. "Plant-wide byproduct gas distribution under uncertainty in iron and steel industry via quantile forecasting and robust optimization," Applied Energy, Elsevier, vol. 350(C).
    11. Wen, Shizhao & Wang, Hongzeng & Qian, Jinhua & Men, Xuanyu, 2023. "A novel combined model based on echo state network optimized by whale optimization algorithm for blast furnace gas prediction," Energy, Elsevier, vol. 279(C).
    12. Mohamed Habib Jabeur & Sonia Mahjoub & Cyril Toublanc, 2023. "Sustainable Production Scheduling with On-Site Intermittent Renewable Energy and Demand-Side Management: A Feed-Animal Case Study," Energies, MDPI, vol. 16(14), pages 1-24, July.
    13. Xu, Tingting & Huo, Zhaoyi & Wang, Wenjing & Xie, Ning & Li, Lili & Liu, Yingjie & Mu, Lin, 2024. "Evaluation of by-product-gas utilization options for carbon reduction at an integrated iron and steel mill," Energy, Elsevier, vol. 294(C).
    14. Na, Hongming & Sun, Jingchao & Qiu, Ziyang & Yuan, Yuxing & Du, Tao, 2022. "Optimization of energy efficiency, energy consumption and CO2 emission in typical iron and steel manufacturing process," Energy, Elsevier, vol. 257(C).
    15. Na, Hongming & Sun, Jingchao & Qiu, Ziyang & He, Jianfei & Yuan, Yuxing & Yan, Tianyi & Du, Tao, 2021. "A novel evaluation method for energy efficiency of process industry — A case study of typical iron and steel manufacturing process," Energy, Elsevier, vol. 233(C).
    16. Yuan, Yuxing & Na, Hongming & Du, Tao & Qiu, Ziyang & Sun, Jingchao & Yan, Tianyi & Che, Zichang, 2023. "Multi-objective optimization and analysis of material and energy flows in a typical steel plant," Energy, Elsevier, vol. 263(PD).
    17. Kar, Sumi & Basu, Kajla & Sarkar, Biswajit, 2023. "Advertisement policy for dual-channel within emissions-controlled flexible production system," Journal of Retailing and Consumer Services, Elsevier, vol. 71(C).
    18. Sarkar, Biswajit & Seok, Hyesung & Jana, Tapas Kumar & Dey, Bikash Koli, 2023. "Is the system reliability profitable for retailing and consumer service of a dynamical system under cross-price elasticity of demand?," Journal of Retailing and Consumer Services, Elsevier, vol. 75(C).
    19. Sun, Yong & Liu, Baoyin & Sun, Zhongrui & Yang, Ruijia, 2023. "Inter-regional cooperation in the transfers of energy-intensive industry: An evolutionary game approach," Energy, Elsevier, vol. 282(C).
    20. Lei Ding & Xuejuan Fang, 2022. "Spatial–temporal distribution of air-pollution-intensive industries and its social-economic driving mechanism in Zhejiang Province, China: a framework of spatial econometric analysis," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(2), pages 1681-1712, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:326:y:2022:i:c:s0306261922012430. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.