A Precise Energy Consumption Model for Computer Numerical Control Machines: A Hybrid Approach
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Fengfan Han & Anqi Ren & Jinxin Liu & Lixingbo Yu & Fei Jia & Haochen Hou & Ying Liu, 2024. "Towards Sustainable Industry: A Comprehensive Review of Energy–Economy–Environment System Analysis and Future Trends," Sustainability, MDPI, vol. 16(12), pages 1-19, June.
- Olurotimi Oguntola & Kwaku Boakye & Steve Simske, 2024. "Towards Leveraging Artificial Intelligence for Sustainable Cement Manufacturing: A Systematic Review of AI Applications in Electrical Energy Consumption Optimization," Sustainability, MDPI, vol. 16(11), pages 1-17, June.
- Ma, Shuaiyin & Zhang, Yingfeng & Lv, Jingxiang & Ge, Yuntian & Yang, Haidong & Li, Lin, 2020. "Big data driven predictive production planning for energy-intensive manufacturing industries," Energy, Elsevier, vol. 211(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ma, Shuaiyin & Ding, Wei & Liu, Yang & Ren, Shan & Yang, Haidong, 2022. "Digital twin and big data-driven sustainable smart manufacturing based on information management systems for energy-intensive industries," Applied Energy, Elsevier, vol. 326(C).
- Cen, Xiao & Chen, Zengliang & Chen, Haifeng & Ding, Chen & Ding, Bo & Li, Fei & Lou, Fangwei & Zhu, Zhenyu & Zhang, Hongyu & Hong, Bingyuan, 2024. "User repurchase behavior prediction for integrated energy supply stations based on the user profiling method," Energy, Elsevier, vol. 286(C).
- Sun, Jingchao & Na, Hongming & Yan, Tianyi & Che, Zichang & Qiu, Ziyang & Yuan, Yuxing & Li, Yingnan & Du, Tao & Song, Yanli & Fang, Xin, 2022. "Cost-benefit assessment of manufacturing system using comprehensive value flow analysis," Applied Energy, Elsevier, vol. 310(C).
- Liu, Shuhan & Sun, Wenqiang, 2023. "Attention mechanism-aided data- and knowledge-driven soft sensors for predicting blast furnace gas generation," Energy, Elsevier, vol. 262(PA).
- Ranaboldo, M. & Aragüés-Peñalba, M. & Arica, E. & Bade, A. & Bullich-Massagué, E. & Burgio, A. & Caccamo, C. & Caprara, A. & Cimmino, D. & Domenech, B. & Donoso, I. & Fragapane, G. & González-Font-de-, 2024. "A comprehensive overview of industrial demand response status in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 203(C).
- Ali, Aliyuda, 2021. "Data-driven based machine learning models for predicting the deliverability of underground natural gas storage in salt caverns," Energy, Elsevier, vol. 229(C).
- Yang, Jiaojiao & Sun, Zeyi & Hu, Wenqing & Steinmeister, Louis, 2022. "Joint control of manufacturing and onsite microgrid system via novel neural-network integrated reinforcement learning algorithms," Applied Energy, Elsevier, vol. 315(C).
- Mengmeng Xu & Ruipeng Tan, 2024. "Digital economy as a catalyst for low-carbon transformation in China: new analytical insights," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-14, December.
- Liu, Gang & Wang, Kun & Hao, Xiaochen & Zhang, Zhipeng & Zhao, Yantao & Xu, Qingquan, 2022. "SA-LSTMs: A new advance prediction method of energy consumption in cement raw materials grinding system," Energy, Elsevier, vol. 241(C).
- Gao, Baoyun & Peng, Shitong & Li, Tao & Wang, Fengtao & Guo, Jianan & Liu, Conghu & Zhang, Hongchao, 2024. "Integration of improved meta-heuristic and machine learning for optimizing energy efficiency in additive manufacturing process," Energy, Elsevier, vol. 306(C).
- Elsisi, Mahmoud & Amer, Mohammed & Dababat, Alya’ & Su, Chun-Lien, 2023. "A comprehensive review of machine learning and IoT solutions for demand side energy management, conservation, and resilient operation," Energy, Elsevier, vol. 281(C).
- Ma, Shuaiyin & Huang, Yuming & Liu, Yang & Liu, Haizhou & Chen, Yanping & Wang, Jin & Xu, Jun, 2023. "Big data-driven correlation analysis based on clustering for energy-intensive manufacturing industries," Applied Energy, Elsevier, vol. 349(C).
- Mohamed Habib Jabeur & Sonia Mahjoub & Cyril Toublanc, 2023. "Sustainable Production Scheduling with On-Site Intermittent Renewable Energy and Demand-Side Management: A Feed-Animal Case Study," Energies, MDPI, vol. 16(14), pages 1-24, July.
- Xian, Huafeng & Che, Jinxing, 2022. "Multi-space collaboration framework based optimal model selection for power load forecasting," Applied Energy, Elsevier, vol. 314(C).
- Ma, Shuaiyin & Huang, Yuming & Liu, Yang & Kong, Xianguang & Yin, Lei & Chen, Gaige, 2023. "Edge-cloud cooperation-driven smart and sustainable production for energy-intensive manufacturing industries," Applied Energy, Elsevier, vol. 337(C).
More about this item
Keywords
energy efficiency; CNC; DNN; Industry 4.0;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:23:p:10659-:d:1537162. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.