IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v268y2020ics030626192030458x.html
   My bibliography  Save this article

Material and energy flows of the iron and steel industry: Status quo, challenges and perspectives

Author

Listed:
  • Sun, Wenqiang
  • Wang, Qiang
  • Zhou, Yue
  • Wu, Jianzhong

Abstract

Integrated analysis and optimization of material and energy flows in the iron and steel industry have drawn considerable interest from steelmakers, energy engineers, policymakers, financial firms, and academic researchers. Numerous publications in this area have identified their great potential to bring significant benefits and innovation. Although much technical work has been done to analyze and optimize material and energy flows, there is a lack of overview of material and energy flows of the iron and steel industry. To fill this gap, this work first provides an overview of different steel production routes. Next, the modelling, scheduling and interrelation regarding material and energy flows in the iron and steel industry are presented by thoroughly reviewing the existing literature. This study selects eighty publications on the material and energy flows of steelworks, from which a map of the potential of integrating material and energy flows for iron and steel sites is constructed. The paper discusses the challenges to be overcome and the future directions of material and energy flow research in the iron and steel industry, including the fundamental understandings of flow mechanisms, the dynamic material and energy flow scheduling and optimization, the synergy between material and energy flows, flexible production processes and flexible energy systems, smart steel manufacturing and smart energy systems, and revolutionary steelmaking routes and technologies.

Suggested Citation

  • Sun, Wenqiang & Wang, Qiang & Zhou, Yue & Wu, Jianzhong, 2020. "Material and energy flows of the iron and steel industry: Status quo, challenges and perspectives," Applied Energy, Elsevier, vol. 268(C).
  • Handle: RePEc:eee:appene:v:268:y:2020:i:c:s030626192030458x
    DOI: 10.1016/j.apenergy.2020.114946
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626192030458X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.114946?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Qadrdan, Meysam & Cheng, Meng & Wu, Jianzhong & Jenkins, Nick, 2017. "Benefits of demand-side response in combined gas and electricity networks," Applied Energy, Elsevier, vol. 192(C), pages 360-369.
    2. Kong, Haining & Qi, Ershi & Li, Hui & Li, Gang & Zhang, Xing, 2010. "An MILP model for optimization of byproduct gases in the integrated iron and steel plant," Applied Energy, Elsevier, vol. 87(7), pages 2156-2163, July.
    3. Liu, Xiong & Chen, Lingen & Qin, Xiaoyong & Sun, Fengrui, 2015. "Exergy loss minimization for a blast furnace with comparative analyses for energy flows and exergy flows," Energy, Elsevier, vol. 93(P1), pages 10-19.
    4. Tang, Lixin & Liu, Guoli, 2007. "A mathematical programming model and solution for scheduling production orders in Shanghai Baoshan Iron and Steel Complex," European Journal of Operational Research, Elsevier, vol. 182(3), pages 1453-1468, November.
    5. Hui Yang & Soundar Kumara & Satish T.S. Bukkapatnam & Fugee Tsung, 2019. "The internet of things for smart manufacturing: A review," IISE Transactions, Taylor & Francis Journals, vol. 51(11), pages 1190-1216, November.
    6. Nuytten, Thomas & Claessens, Bert & Paredis, Kristof & Van Bael, Johan & Six, Daan, 2013. "Flexibility of a combined heat and power system with thermal energy storage for district heating," Applied Energy, Elsevier, vol. 104(C), pages 583-591.
    7. Zhao, Haitao & Jiang, Peng & Chen, Zhe & Ezeh, Collins I. & Hong, Yuanda & Guo, Yishan & Zheng, Chenghang & Džapo, Hrvoje & Gao, Xiang & Wu, Tao, 2019. "Improvement of fuel sources and energy products flexibility in coal power plants via energy-cyber-physical-systems approach," Applied Energy, Elsevier, vol. 254(C).
    8. Mousa, Elsayed & Wang, Chuan & Riesbeck, Johan & Larsson, Mikael, 2016. "Biomass applications in iron and steel industry: An overview of challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1247-1266.
    9. Dal Magro, Fabio & Savino, Stefano & Meneghetti, Antonella & Nardin, Gioacchino, 2017. "Coupling waste heat extraction by phase change materials with superheated steam generation in the steel industry," Energy, Elsevier, vol. 137(C), pages 1107-1118.
    10. Tang, Lixin & Liu, Jiyin & Rong, Aiying & Yang, Zihou, 2000. "A mathematical programming model for scheduling steelmaking-continuous casting production," European Journal of Operational Research, Elsevier, vol. 120(2), pages 423-435, January.
    11. Wang, Heming & Wang, Guoqiang & Qi, Jianchuan & Schandl, Heinz & Li, Yumeng & Feng, Cuiyang & Yang, Xuechun & Wang, Yao & Wang, Xinzhe & Liang, Sai, 2020. "Scarcity-weighted fossil fuel footprint of China at the provincial level," Applied Energy, Elsevier, vol. 258(C).
    12. He, Kun & Wang, Li, 2017. "A review of energy use and energy-efficient technologies for the iron and steel industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1022-1039.
    13. Sen, Parag & Roy, Mousumi & Pal, Parimal, 2016. "Application of ARIMA for forecasting energy consumption and GHG emission: A case study of an Indian pig iron manufacturing organization," Energy, Elsevier, vol. 116(P1), pages 1031-1038.
    14. Lund, Peter D. & Lindgren, Juuso & Mikkola, Jani & Salpakari, Jyri, 2015. "Review of energy system flexibility measures to enable high levels of variable renewable electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 785-807.
    15. Matino, Ismael & Dettori, Stefano & Colla, Valentina & Weber, Valentine & Salame, Sahar, 2019. "Forecasting blast furnace gas production and demand through echo state neural network-based models: Pave the way to off-gas optimized management," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    16. Lee Thomas & Yue Zhou & Chao Long & Jianzhong Wu & Nick Jenkins, 2019. "A general form of smart contract for decentralized energy systems management," Nature Energy, Nature, vol. 4(2), pages 140-149, February.
    17. Al-Wakeel, Ali & Wu, Jianzhong & Jenkins, Nick, 2016. "State estimation of medium voltage distribution networks using smart meter measurements," Applied Energy, Elsevier, vol. 184(C), pages 207-218.
    18. Zhou, Yue & Wu, Jianzhong & Long, Chao, 2018. "Evaluation of peer-to-peer energy sharing mechanisms based on a multiagent simulation framework," Applied Energy, Elsevier, vol. 222(C), pages 993-1022.
    19. Lin, Boqiang & Du, Zhili, 2017. "Promoting energy conservation in China's metallurgy industry," Energy Policy, Elsevier, vol. 104(C), pages 285-294.
    20. Griffin, Paul W. & Hammond, Geoffrey P., 2019. "Industrial energy use and carbon emissions reduction in the iron and steel sector: A UK perspective," Applied Energy, Elsevier, vol. 249(C), pages 109-125.
    21. Sun, Wenqiang & Wang, Zihao & Wang, Qiang, 2020. "Hybrid event-, mechanism- and data-driven prediction of blast furnace gas generation," Energy, Elsevier, vol. 199(C).
    22. Antonio Moreno & Christian Terwiesch, 2015. "Pricing and Production Flexibility: An Empirical Analysis of the U.S. Automotive Industry," Manufacturing & Service Operations Management, INFORMS, vol. 17(4), pages 428-444, October.
    23. Sun, Wenqiang & Zhang, Fengyuan, 2016. "Design and thermodynamic analysis of a flash power system driven by process heat of continuous casting grade steel billet," Energy, Elsevier, vol. 116(P1), pages 94-101.
    24. de Oliveira Junior, Valter B. & Pena, João G. Coelho & Salles, José L. Félix, 2016. "An improved plant-wide multiperiod optimization model of a byproduct gas supply system in the iron and steel-making process," Applied Energy, Elsevier, vol. 164(C), pages 462-474.
    25. Naim, Mohamed & Aryee, Gilbert & Potter, Andrew, 2010. "Determining a logistics provider's flexibility capability," International Journal of Production Economics, Elsevier, vol. 127(1), pages 39-45, September.
    26. Chenyi Xu & Zhichun Liu & Shicheng Wang & Wei Liu, 2019. "Numerical Simulation and Optimization of Waste Heat Recovery in a Sinter Vertical Tank," Energies, MDPI, vol. 12(3), pages 1-19, January.
    27. Victor, Nadejda & Nichols, Christopher & Zelek, Charles, 2018. "The U.S. power sector decarbonization: Investigating technology options with MARKAL nine-region model," Energy Economics, Elsevier, vol. 73(C), pages 410-425.
    28. Paulus, Moritz & Borggrefe, Frieder, 2011. "The potential of demand-side management in energy-intensive industries for electricity markets in Germany," Applied Energy, Elsevier, vol. 88(2), pages 432-441, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, Jingchao & Na, Hongming & Yan, Tianyi & Qiu, Ziyang & Yuan, Yuxing & He, Jianfei & Li, Yingnan & Wang, Yisong & Du, Tao, 2021. "A comprehensive assessment on material, exergy and emission networks for the integrated iron and steel industry," Energy, Elsevier, vol. 235(C).
    2. Sergio García García & Vicente Rodríguez Montequín & Henar Morán Palacios & Adriano Mones Bayo, 2020. "A Mixed Integer Linear Programming Model for the Optimization of Steel Waste Gases in Cogeneration: A Combined Coke Oven and Converter Gas Case Study," Energies, MDPI, vol. 13(15), pages 1-25, July.
    3. Zhang, Yang & Campana, Pietro Elia & Yang, Ying & Stridh, Bengt & Lundblad, Anders & Yan, Jinyue, 2018. "Energy flexibility from the consumer: Integrating local electricity and heat supplies in a building," Applied Energy, Elsevier, vol. 223(C), pages 430-442.
    4. Zhang, Hanxin & Sun, Wenqiang & Li, Weidong & Ma, Guangyu, 2022. "A carbon flow tracing and carbon accounting method for exploring CO2 emissions of the iron and steel industry: An integrated material–energy–carbon hub," Applied Energy, Elsevier, vol. 309(C).
    5. Walmsley, Timothy Gordon & Philipp, Matthias & Picón-Núñez, Martín & Meschede, Henning & Taylor, Matthew Thomas & Schlosser, Florian & Atkins, Martin John, 2023. "Hybrid renewable energy utility systems for industrial sites: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    6. Jin, Xiaolong & Wu, Qiuwei & Jia, Hongjie, 2020. "Local flexibility markets: Literature review on concepts, models and clearing methods," Applied Energy, Elsevier, vol. 261(C).
    7. Brouwer, Anne Sjoerd & van den Broek, Machteld & Zappa, William & Turkenburg, Wim C. & Faaij, André, 2016. "Least-cost options for integrating intermittent renewables in low-carbon power systems," Applied Energy, Elsevier, vol. 161(C), pages 48-74.
    8. Li, Yibo & Li, Juan & Sun, Mei & Guo, Yanzi & Cheng, Faxin & Gao, Cuixia, 2024. "Analysis of carbon neutrality technology path selection in the steel industry under policy incentives," Energy, Elsevier, vol. 292(C).
    9. Amtul Samie Maqbool & Jens Baetens & Sara Lotfi & Lieven Vandevelde & Greet Van Eetvelde, 2019. "Assessing Financial and Flexibility Incentives for Integrating Wind Energy in the Grid Via Agent-Based Modeling," Energies, MDPI, vol. 12(22), pages 1-32, November.
    10. Hu, Xueyue & Wang, Chunying & Elshkaki, Ayman, 2024. "Material-energy Nexus: A systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    11. Guo, Yurun & Wang, Shugang & Wang, Jihong & Zhang, Tengfei & Ma, Zhenjun & Jiang, Shuang, 2024. "Key district heating technologies for building energy flexibility: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    12. Yanjuan Yu & Hongkun Chen & Lei Chen, 2018. "Comparative Study of Electric Energy Storages and Thermal Energy Auxiliaries for Improving Wind Power Integration in the Cogeneration System," Energies, MDPI, vol. 11(2), pages 1-16, January.
    13. Lefeng, Shi & Shengnan, Lv & Chunxiu, Liu & Yue, Zhou & Cipcigan, Liana & Acker, Thomas L., 2020. "A framework for electric vehicle power supply chain development," Utilities Policy, Elsevier, vol. 64(C).
    14. Henni, Sarah & Staudt, Philipp & Kandiah, Balendra & Weinhardt, Christof, 2021. "Infrastructural coupling of the electricity and gas distribution grid to reduce renewable energy curtailment," Applied Energy, Elsevier, vol. 288(C).
    15. Michael Schoepf & Martin Weibelzahl & Lisa Nowka, 2018. "The Impact of Substituting Production Technologies on the Economic Demand Response Potential in Industrial Processes," Energies, MDPI, vol. 11(9), pages 1-13, August.
    16. Neda Hajibandeh & Mehdi Ehsan & Soodabeh Soleymani & Miadreza Shafie-khah & João P. S. Catalão, 2017. "The Mutual Impact of Demand Response Programs and Renewable Energies: A Survey," Energies, MDPI, vol. 10(9), pages 1-18, September.
    17. Chen, Qianqian & Gu, Yu & Tang, Zhiyong & Wei, Wei & Sun, Yuhan, 2018. "Assessment of low-carbon iron and steel production with CO2 recycling and utilization technologies: A case study in China," Applied Energy, Elsevier, vol. 220(C), pages 192-207.
    18. Finck, Christian & Li, Rongling & Kramer, Rick & Zeiler, Wim, 2018. "Quantifying demand flexibility of power-to-heat and thermal energy storage in the control of building heating systems," Applied Energy, Elsevier, vol. 209(C), pages 409-425.
    19. Stinner, Sebastian & Huchtemann, Kristian & Müller, Dirk, 2016. "Quantifying the operational flexibility of building energy systems with thermal energy storages," Applied Energy, Elsevier, vol. 181(C), pages 140-154.
    20. Coninx, Kristof & Deconinck, Geert & Holvoet, Tom, 2018. "Who gets my flex? An evolutionary game theory analysis of flexibility market dynamics," Applied Energy, Elsevier, vol. 218(C), pages 104-113.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:268:y:2020:i:c:s030626192030458x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.