IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v310y2022ics0306261922000812.html
   My bibliography  Save this article

Cost-benefit assessment of manufacturing system using comprehensive value flow analysis

Author

Listed:
  • Sun, Jingchao
  • Na, Hongming
  • Yan, Tianyi
  • Che, Zichang
  • Qiu, Ziyang
  • Yuan, Yuxing
  • Li, Yingnan
  • Du, Tao
  • Song, Yanli
  • Fang, Xin

Abstract

The comprehensive assessment of the performance of production system is a crucial activity for the implementation of sustainable production practices for the manufacturing industry. The existing relevant assessment methods are not comprehensive enough, especially in terms of material, energy, environment and economics. They lack specific economic performance indicators based on industrial systematic analysis, and couldn’t give a clear explanation for the comprehensive value flow in the production process. This paper proposes a novel assessment method, called Comprehensive Value Flow Analysis, which aims to describe and classify activities in the network of material, energy, environment and economics according to systematic energy saving and lean production theory. The drawing method of comprehensive value flow and a new cost-benefit indicator named advanced cost-profit ratio are proposed for identifying quantitatively the criticalities related to activities, processes, systems, technologies, etc. And significant suggestions for the improvement strategies implementation are given. A case study of a typical iron and steel enterprise has been evaluated using this method. Moreover, it successfully identifies the issues about energy structure, production structure and technologies application with a global perspective by explicating the comprehensive value flow and analyzing the relevant indicators, and then offering some valuable suggestions for sustainable development. The analysis highlighted that every enterprise has its own marginal benefits according to the production status and market economy. In summary, it is favorable to make real and effective decisions on improvement for the comprehensive benefits of enterprises.

Suggested Citation

  • Sun, Jingchao & Na, Hongming & Yan, Tianyi & Che, Zichang & Qiu, Ziyang & Yuan, Yuxing & Li, Yingnan & Du, Tao & Song, Yanli & Fang, Xin, 2022. "Cost-benefit assessment of manufacturing system using comprehensive value flow analysis," Applied Energy, Elsevier, vol. 310(C).
  • Handle: RePEc:eee:appene:v:310:y:2022:i:c:s0306261922000812
    DOI: 10.1016/j.apenergy.2022.118604
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922000812
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.118604?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shih, Yi-Hsuan & Tseng, Chao-Heng, 2014. "Cost-benefit analysis of sustainable energy development using life-cycle co-benefits assessment and the system dynamics approach," Applied Energy, Elsevier, vol. 119(C), pages 57-66.
    2. Sciubba, Enrico & Ulgiati, Sergio, 2005. "Emergy and exergy analyses: Complementary methods or irreducible ideological options?," Energy, Elsevier, vol. 30(10), pages 1953-1988.
    3. Papetti, Alessandra & Menghi, Roberto & Di Domizio, Giulia & Germani, Michele & Marconi, Marco, 2019. "Resources value mapping: A method to assess the resource efficiency of manufacturing systems," Applied Energy, Elsevier, vol. 249(C), pages 326-342.
    4. Yılmaz, Kadir & Kayfeci, Muhammet & Keçebaş, Ali, 2019. "Thermodynamic evaluation of a waste gas-fired steam power plant in an iron and steel facility using enhanced exergy analysis," Energy, Elsevier, vol. 169(C), pages 684-695.
    5. Christ, Katherine L. & Burritt, Roger L., 2016. "ISO 14051: A new era for MFCA implementation and research," Revista de Contabilidad - Spanish Accounting Review, Elsevier, vol. 19(1), pages 1-9.
    6. Hao, Xiaoqing & An, Haizhong & Qi, Hai & Gao, Xiangyun, 2016. "Evolution of the exergy flow network embodied in the global fossil energy trade: Based on complex network," Applied Energy, Elsevier, vol. 162(C), pages 1515-1522.
    7. May, Gökan & Stahl, Bojan & Taisch, Marco, 2016. "Energy management in manufacturing: Toward eco-factories of the future – A focus group study," Applied Energy, Elsevier, vol. 164(C), pages 628-638.
    8. Smith, Leigh & Ball, Peter, 2012. "Steps towards sustainable manufacturing through modelling material, energy and waste flows," International Journal of Production Economics, Elsevier, vol. 140(1), pages 227-238.
    9. Trianni, Andrea & Cagno, Enrico & Bertolotti, Matteo & Thollander, Patrik & Andersson, Elias, 2019. "Energy management: A practice-based assessment model," Applied Energy, Elsevier, vol. 235(C), pages 1614-1636.
    10. Chiu, Fan-Ping & Kuo, Hsiao-I. & Chen, Chi-Chung & Hsu, Chia-Sheng, 2015. "The energy price equivalence of carbon taxes and emissions trading—Theory and evidence," Applied Energy, Elsevier, vol. 160(C), pages 164-171.
    11. Alexander Sunk & Peter Kuhlang & Thomas Edtmayr & Wilfried Sihn, 2017. "Developments of traditional value stream mapping to enhance personal and organisational system and methods competencies," International Journal of Production Research, Taylor & Francis Journals, vol. 55(13), pages 3732-3746, July.
    12. Yadav, Deepak & Banerjee, Rangan, 2020. "Net energy and carbon footprint analysis of solar hydrogen production from the high-temperature electrolysis process," Applied Energy, Elsevier, vol. 262(C).
    13. Kepplinger, D. & Templ, M. & Upadhyaya, S., 2013. "Analysis of energy intensity in manufacturing industry using mixed-effects models," Energy, Elsevier, vol. 59(C), pages 754-763.
    14. Liu, Conghu & Cai, Wei & Dinolov, Ognyan & Zhang, Cuixia & Rao, Weizhen & Jia, Shun & Li, Li & Chan, Felix T.S., 2018. "Emergy based sustainability evaluation of remanufacturing machining systems," Energy, Elsevier, vol. 150(C), pages 670-680.
    15. Wu, Junnian & Wang, Ruiqi & Pu, Guangying & Qi, Hang, 2016. "Integrated assessment of exergy, energy and carbon dioxide emissions in an iron and steel industrial network," Applied Energy, Elsevier, vol. 183(C), pages 430-444.
    16. Seckin, Candeniz & Bayulken, Ahmet R., 2013. "Extended Exergy Accounting (EEA) analysis of municipal wastewater treatment – Determination of environmental remediation cost for municipal wastewater," Applied Energy, Elsevier, vol. 110(C), pages 55-64.
    17. Rocco, M.V. & Colombo, E. & Sciubba, E., 2014. "Advances in exergy analysis: a novel assessment of the Extended Exergy Accounting method," Applied Energy, Elsevier, vol. 113(C), pages 1405-1420.
    18. Zhang, Cheng & Liu, Chao & Xu, Xiaoxiao & Li, Qibin & Wang, Shukun, 2019. "Energetic, exergetic, economic and environmental (4E) analysis and multi-factor evaluation method of low GWP fluids in trans-critical organic Rankine cycles," Energy, Elsevier, vol. 168(C), pages 332-345.
    19. Ren, Hongbo & Wu, Qiong & Zhu, Qunzhi & Gao, Weijun, 2019. "Cost–benefit analysis of distributed energy systems considering multi-benefits and multi-stakeholders," Energy, Elsevier, vol. 189(C).
    20. An, Runying & Yu, Biying & Li, Ru & Wei, Yi-Ming, 2018. "Potential of energy savings and CO2 emission reduction in China’s iron and steel industry," Applied Energy, Elsevier, vol. 226(C), pages 862-880.
    21. May, Gökan & Barletta, Ilaria & Stahl, Bojan & Taisch, Marco, 2015. "Energy management in production: A novel method to develop key performance indicators for improving energy efficiency," Applied Energy, Elsevier, vol. 149(C), pages 46-61.
    22. Sun, Jingchao & Na, Hongming & Yan, Tianyi & Qiu, Ziyang & Yuan, Yuxing & He, Jianfei & Li, Yingnan & Wang, Yisong & Du, Tao, 2021. "A comprehensive assessment on material, exergy and emission networks for the integrated iron and steel industry," Energy, Elsevier, vol. 235(C).
    23. Brundage, Michael P. & Chang, Qing & Zou, Jing & Li, Yang & Arinez, Jorge & Xiao, Guoxian, 2015. "Energy economics in the manufacturing industry: A return on investment strategy," Energy, Elsevier, vol. 93(P2), pages 1426-1435.
    24. Sun, Wenqiang & Wang, Qiang & Zhou, Yue & Wu, Jianzhong, 2020. "Material and energy flows of the iron and steel industry: Status quo, challenges and perspectives," Applied Energy, Elsevier, vol. 268(C).
    25. Talaei, Alireza & Pier, David & Iyer, Aishwarya V. & Ahiduzzaman, Md & Kumar, Amit, 2019. "Assessment of long-term energy efficiency improvement and greenhouse gas emissions mitigation options for the cement industry," Energy, Elsevier, vol. 170(C), pages 1051-1066.
    26. Lawrence, Akvile & Karlsson, Magnus & Thollander, Patrik, 2018. "Effects of firm characteristics and energy management for improving energy efficiency in the pulp and paper industry," Energy, Elsevier, vol. 153(C), pages 825-835.
    27. Bachmann, Till M. & van der Kamp, Jonathan, 2014. "Environmental cost-benefit analysis and the EU (European Union) Industrial Emissions Directive: Exploring the societal efficiency of a DeNOx retrofit at a coal-fired power plant," Energy, Elsevier, vol. 68(C), pages 125-139.
    28. Gonzalez Hernandez, Ana & Lupton, Richard C. & Williams, Chris & Cullen, Jonathan M., 2018. "Control data, Sankey diagrams, and exergy: Assessing the resource efficiency of industrial plants," Applied Energy, Elsevier, vol. 218(C), pages 232-245.
    29. Juárez-Hernández, Sergio & Usón, Sergio & Pardo, Claudia Sheinbaum, 2019. "Assessing maize production systems in Mexico from an energy, exergy, and greenhouse-gas emissions perspective," Energy, Elsevier, vol. 170(C), pages 199-211.
    30. Bin Zhou, 2016. "Lean principles, practices, and impacts: a study on small and medium-sized enterprises (SMEs)," Annals of Operations Research, Springer, vol. 241(1), pages 457-474, June.
    31. Safder, Usman & Nguyen, Hai-Tra & Ifaei, Pouya & Yoo, ChangKyoo, 2021. "Energetic, economic, exergetic, and exergorisk (4E) analyses of a novel multi-generation energy system assisted with bagasse-biomass gasifier and multi-effect desalination unit," Energy, Elsevier, vol. 219(C).
    32. Maziar Kermani & Ivan D. Kantor & Anna S. Wallerand & Julia Granacher & Adriano V. Ensinas & François Maréchal, 2019. "A Holistic Methodology for Optimizing Industrial Resource Efficiency," Energies, MDPI, vol. 12(7), pages 1-33, April.
    33. Jaouad Abisourour & Mohsine Hachkar & Badia Mounir & Abdelmajid Farchi, 2020. "Methodology for integrated management system improvement: combining costs deployment and value stream mapping," International Journal of Production Research, Taylor & Francis Journals, vol. 58(12), pages 3667-3685, June.
    34. Ma, Shuaiyin & Zhang, Yingfeng & Lv, Jingxiang & Ge, Yuntian & Yang, Haidong & Li, Lin, 2020. "Big data driven predictive production planning for energy-intensive manufacturing industries," Energy, Elsevier, vol. 211(C).
    35. Ameri, Mohammad & Mokhtari, Hamid & Mostafavi Sani, Mostafa, 2018. "4E analyses and multi-objective optimization of different fuels application for a large combined cycle power plant," Energy, Elsevier, vol. 156(C), pages 371-386.
    36. Song, Dan & Lin, Ling & Wu, Ye, 2019. "Extended exergy accounting for a typical cement industry in China," Energy, Elsevier, vol. 174(C), pages 678-686.
    37. Griffin, Paul W. & Hammond, Geoffrey P., 2019. "Industrial energy use and carbon emissions reduction in the iron and steel sector: A UK perspective," Applied Energy, Elsevier, vol. 249(C), pages 109-125.
    38. Jia, Zhijie & Lin, Boqiang, 2021. "How to achieve the first step of the carbon-neutrality 2060 target in China: The coal substitution perspective," Energy, Elsevier, vol. 233(C).
    39. Welsch, Bastian & Göllner-Völker, Laura & Schulte, Daniel O. & Bär, Kristian & Sass, Ingo & Schebek, Liselotte, 2018. "Environmental and economic assessment of borehole thermal energy storage in district heating systems," Applied Energy, Elsevier, vol. 216(C), pages 73-90.
    40. Zhang, Hanxin & Sun, Wenqiang & Li, Weidong & Ma, Guangyu, 2022. "A carbon flow tracing and carbon accounting method for exploring CO2 emissions of the iron and steel industry: An integrated material–energy–carbon hub," Applied Energy, Elsevier, vol. 309(C).
    41. Wu, Junnian & Pu, Guangying & Guo, Yan & Lv, Jingwen & Shang, Jiangwei, 2018. "Retrospective and prospective assessment of exergy, life cycle carbon emissions, and water footprint for coking network evolution in China," Applied Energy, Elsevier, vol. 218(C), pages 479-493.
    42. Sylvie Ferrari & Stéphane Genoud & Jean-Baptiste Lesourd, 2001. "Thermodynamics and economics: Towards exergy-based indicators of sustainable development," Swiss Journal of Economics and Statistics (SJES), Swiss Society of Economics and Statistics (SSES), vol. 137(III), pages 319-336, September.
    43. Giacone, E. & Mancò, S., 2012. "Energy efficiency measurement in industrial processes," Energy, Elsevier, vol. 38(1), pages 331-345.
    44. Sun, Qiuye & Dong, Qianyu & You, Shi & Li, Zhibo & Wang, Rui, 2020. "A unified energy flow analysis considering initial guesses in complex multi-energy carrier systems," Energy, Elsevier, vol. 213(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuan, Yuxing & Na, Hongming & Du, Tao & Qiu, Ziyang & Sun, Jingchao & Yan, Tianyi & Che, Zichang, 2023. "Multi-objective optimization and analysis of material and energy flows in a typical steel plant," Energy, Elsevier, vol. 263(PD).
    2. Na, Hongming & Sun, Jingchao & Qiu, Ziyang & Yuan, Yuxing & Du, Tao, 2022. "Optimization of energy efficiency, energy consumption and CO2 emission in typical iron and steel manufacturing process," Energy, Elsevier, vol. 257(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, Jingchao & Na, Hongming & Yan, Tianyi & Qiu, Ziyang & Yuan, Yuxing & He, Jianfei & Li, Yingnan & Wang, Yisong & Du, Tao, 2021. "A comprehensive assessment on material, exergy and emission networks for the integrated iron and steel industry," Energy, Elsevier, vol. 235(C).
    2. Qiu, Ziyang & Sun, Jingchao & Du, Tao & Na, Hongming & Zhang, Lei & Yuan, Yuxing & Wang, Yisong, 2024. "Impact of hydrogen metallurgy on the current iron and steel industry: A comprehensive material-exergy-emission flow analysis," Applied Energy, Elsevier, vol. 356(C).
    3. Ma, Shuaiyin & Ding, Wei & Liu, Yang & Ren, Shan & Yang, Haidong, 2022. "Digital twin and big data-driven sustainable smart manufacturing based on information management systems for energy-intensive industries," Applied Energy, Elsevier, vol. 326(C).
    4. Gibb, Duncan & Johnson, Maike & Romaní, Joaquim & Gasia, Jaume & Cabeza, Luisa F. & Seitz, Antje, 2018. "Process integration of thermal energy storage systems – Evaluation methodology and case studies," Applied Energy, Elsevier, vol. 230(C), pages 750-760.
    5. Liu, Shuhan & Sun, Wenqiang, 2023. "Attention mechanism-aided data- and knowledge-driven soft sensors for predicting blast furnace gas generation," Energy, Elsevier, vol. 262(PA).
    6. Ahmadi, Mohammad Mahdi & Keyhani, Alireza & Rosen, Marc A. & Lam, Su Shiung & Pan, Junting & Tabatabaei, Meisam & Aghbashlo, Mortaza, 2022. "Towards sustainable net-zero districts using the extended exergy accounting concept," Renewable Energy, Elsevier, vol. 197(C), pages 747-764.
    7. Qiu, Ziyang & Yue, Qiang & Yan, Tianyi & Wang, Qi & Sun, Jingchao & Yuan, Yuxing & Che, Zichang & Wang, Yisong & Du, Tao, 2023. "Gas utilization optimization and exergy analysis of hydrogen metallurgical shaft furnace," Energy, Elsevier, vol. 263(PC).
    8. Zhang, Hanxin & Sun, Wenqiang & Li, Weidong & Ma, Guangyu, 2022. "A carbon flow tracing and carbon accounting method for exploring CO2 emissions of the iron and steel industry: An integrated material–energy–carbon hub," Applied Energy, Elsevier, vol. 309(C).
    9. Favi, Claudio & Marconi, Marco & Mandolini, Marco & Germani, Michele, 2022. "Sustainable life cycle and energy management of discrete manufacturing plants in the industry 4.0 framework," Applied Energy, Elsevier, vol. 312(C).
    10. Wang, Xiaoyang & Yu, Biying & An, Runying & Sun, Feihu & Xu, Shuo, 2022. "An integrated analysis of China’s iron and steel industry towards carbon neutrality," Applied Energy, Elsevier, vol. 322(C).
    11. Ma, Shuaiyin & Huang, Yuming & Liu, Yang & Liu, Haizhou & Chen, Yanping & Wang, Jin & Xu, Jun, 2023. "Big data-driven correlation analysis based on clustering for energy-intensive manufacturing industries," Applied Energy, Elsevier, vol. 349(C).
    12. Shuangping Wu & Anjun Xu, 2021. "Calculation Method of Energy Saving in Process Engineering: A Case Study of Iron and Steel Production Process," Energies, MDPI, vol. 14(18), pages 1-15, September.
    13. Hasan, A S M Monjurul & Tuhin, Rashedul Amin & Ullah, Mahfuz & Sakib, Taiyeb Hasan & Thollander, Patrik & Trianni, Andrea, 2021. "A comprehensive investigation of energy management practices within energy intensive industries in Bangladesh," Energy, Elsevier, vol. 232(C).
    14. Ma, Shuaiyin & Huang, Yuming & Liu, Yang & Kong, Xianguang & Yin, Lei & Chen, Gaige, 2023. "Edge-cloud cooperation-driven smart and sustainable production for energy-intensive manufacturing industries," Applied Energy, Elsevier, vol. 337(C).
    15. Yuan, Yuxing & Na, Hongming & Du, Tao & Qiu, Ziyang & Sun, Jingchao & Yan, Tianyi & Che, Zichang, 2023. "Multi-objective optimization and analysis of material and energy flows in a typical steel plant," Energy, Elsevier, vol. 263(PD).
    16. Yang, Honghua & Ma, Linwei & Li, Zheng, 2023. "Tracing China's steel use from steel flows in the production system to steel footprints in the consumption system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 172(C).
    17. Jiang, Sheng-Long & Wang, Meihong & Bogle, I. David L., 2023. "Plant-wide byproduct gas distribution under uncertainty in iron and steel industry via quantile forecasting and robust optimization," Applied Energy, Elsevier, vol. 350(C).
    18. Asghari, M. & Afshari, H. & Jaber, M.Y. & Searcy, C., 2023. "Credibility-based cascading approach to achieve net-zero emissions in energy symbiosis networks using an Organic Rankine Cycle," Applied Energy, Elsevier, vol. 340(C).
    19. Monjurul Hasan, A S M & Trianni, Andrea & Shukla, Nagesh & Katic, Mile, 2022. "A novel characterization based framework to incorporate industrial energy management services," Applied Energy, Elsevier, vol. 313(C).
    20. Doh Dinga, Christian & Wen, Zongguo, 2021. "Many-objective optimization of energy conservation and emission reduction in China’s cement industry," Applied Energy, Elsevier, vol. 304(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:310:y:2022:i:c:s0306261922000812. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.