IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v203y2020ics036054422030983x.html
   My bibliography  Save this article

Optimal design, thermodynamic, cost and CO2 emission analyses of coal-to-methanol process integrated with chemical looping air separation and hydrogen technology

Author

Listed:
  • Zhang, Dongqiang
  • Duan, Runhao
  • Li, Hongwei
  • Yang, Qingchun
  • Zhou, Huairong

Abstract

In China, coal is the main raw material used for methanol production to relieve the domestic supply and demand. The conventional coal-to-methanol (CTM) process suffers from less energy efficiency since high energy consumption of air separation and CO2 capture. A novel CTM process integrated with chemical looping air separation (CLAS) and chemical looping hydrogen (CLH) is designed and analyzed to reduce energy consumption, CO2 emission, and improve energy efficiency. The integration of CLAS technology can remove air separation unit and decrease energy consumption to a certain extent. The integration of CLH technology can remove water-gas shift unit and increase the CO2 concentration and reduce the energy consumption of CO2 capture. The CLH technology also produces hydrogen used for adjustment of hydrogen to carbon ratio of the syngas. Process modelling results show that the energy consumption of the CLAS and that of the CO2 capture of the CLH are decreased by 41% and 89%, comparing to those of the conventional air separation and CO2 capture of the CTM process. In addition, the energy efficiency of the new process is increased by 18% and CO2 emission reduced by 45% in comparison with the conventional CTM process.

Suggested Citation

  • Zhang, Dongqiang & Duan, Runhao & Li, Hongwei & Yang, Qingchun & Zhou, Huairong, 2020. "Optimal design, thermodynamic, cost and CO2 emission analyses of coal-to-methanol process integrated with chemical looping air separation and hydrogen technology," Energy, Elsevier, vol. 203(C).
  • Handle: RePEc:eee:energy:v:203:y:2020:i:c:s036054422030983x
    DOI: 10.1016/j.energy.2020.117876
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422030983X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.117876?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Calin-Cristian Cormos, 2018. "Techno-Economic Evaluations of Copper-Based Chemical Looping Air Separation System for Oxy-Combustion and Gasification Power Plants with Carbon Capture," Energies, MDPI, vol. 11(11), pages 1-17, November.
    2. Li, Sheng & Jin, Hongguang & Gao, Lin & Zhang, Xiaosong, 2014. "Exergy analysis and the energy saving mechanism for coal to synthetic/substitute natural gas and power cogeneration system without and with CO2 capture," Applied Energy, Elsevier, vol. 130(C), pages 552-561.
    3. Xiang, Dong & Zhou, Yunpeng, 2018. "Concept design and techno-economic performance of hydrogen and ammonia co-generation by coke-oven gas-pressure swing adsorption integrated with chemical looping hydrogen process," Applied Energy, Elsevier, vol. 229(C), pages 1024-1034.
    4. Yang, Siyu & Yang, Qingchun & Qian, Yu, 2013. "A composite efficiency metrics for evaluation of resource and energy utilization," Energy, Elsevier, vol. 61(C), pages 455-462.
    5. Vasudevan, Suraj & Farooq, Shamsuzzaman & Karimi, Iftekhar A. & Saeys, Mark & Quah, Michael C.G. & Agrawal, Rakesh, 2016. "Energy penalty estimates for CO2 capture: Comparison between fuel types and capture-combustion modes," Energy, Elsevier, vol. 103(C), pages 709-714.
    6. Nandy, Anirban & Loha, Chanchal & Gu, Sai & Sarkar, Pinaki & Karmakar, Malay K. & Chatterjee, Pradip K., 2016. "Present status and overview of Chemical Looping Combustion technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 597-619.
    7. Qin, Shiyue & Chang, Shiyan & Yao, Qiang, 2018. "Modeling, thermodynamic and techno-economic analysis of coal-to-liquids process with different entrained flow coal gasifiers," Applied Energy, Elsevier, vol. 229(C), pages 413-432.
    8. Tong, Andrew & Bayham, Samuel & Kathe, Mandar V. & Zeng, Liang & Luo, Siwei & Fan, Liang-Shih, 2014. "Iron-based syngas chemical looping process and coal-direct chemical looping process development at Ohio State University," Applied Energy, Elsevier, vol. 113(C), pages 1836-1845.
    9. Xiang, Dong & Qian, Yu & Man, Yi & Yang, Siyu, 2014. "Techno-economic analysis of the coal-to-olefins process in comparison with the oil-to-olefins process," Applied Energy, Elsevier, vol. 113(C), pages 639-647.
    10. Abad, Alberto & Adánez, Juan & Gayán, Pilar & de Diego, Luis F. & García-Labiano, Francisco & Sprachmann, Gerald, 2015. "Conceptual design of a 100MWth CLC unit for solid fuel combustion," Applied Energy, Elsevier, vol. 157(C), pages 462-474.
    11. Zhou, Huairong & Yang, Siyu & Xiao, Honghua & Yang, Qingchun & Qian, Yu & Gao, Li, 2016. "Modeling and techno-economic analysis of shale-to-liquid and coal-to-liquid fuels processes," Energy, Elsevier, vol. 109(C), pages 201-210.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Meng, Wenliang & Wang, Dongliang & Zhou, Huairong & Yang, Yong & Li, Hongwei & Liao, Zuwei & Yang, Siyu & Hong, Xiaodong & Li, Guixian, 2023. "Carbon dioxide from oxy-fuel coal-fired power plant integrated green ammonia for urea synthesis: Process modeling, system analysis, and techno-economic evaluation," Energy, Elsevier, vol. 278(C).
    2. Dongliang, Wang & Wenliang, Meng & Huairong, Zhou & Guixian, Li & Yong, Yang & Hongwei, Li, 2021. "Green hydrogen coupling with CO2 utilization of coal-to-methanol for high methanol productivity and low CO2 emission," Energy, Elsevier, vol. 231(C).
    3. Tabibian, Seyed Shayan & Sharifzadeh, Mahdi, 2023. "Statistical and analytical investigation of methanol applications, production technologies, value-chain and economy with a special focus on renewable methanol," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    4. Sun, Shaodong & Li, Zhi & Yuan, Benfeng & Sima, Yapeng & Dai, Yue & Wang, Wanting & He, Zhilong & Li, Chengxin, 2024. "A new pathway to integrate novel coal-to-methanol system with solid oxide fuel cell and electrolysis cell," Energy, Elsevier, vol. 304(C).
    5. Stefan Cristian Galusnyak & Letitia Petrescu & Dora Andreea Chisalita & Calin-Cristian Cormos & Marco Ugolini, 2023. "From Secondary Biomass to Bio-Methanol through CONVERGE Technology: An Environmental Analysis," Energies, MDPI, vol. 16(6), pages 1-18, March.
    6. Byun, Manhee & Kim, Heehyang & Lee, Hyunjun & Lim, Dongjun & Lim, Hankwon, 2022. "Conceptual design for methanol steam reforming in serial packed-bed reactors and membrane filters: Economic and environmental perspectives," Energy, Elsevier, vol. 241(C).
    7. Siddig S. Khalafalla & Umer Zahid & Abdul Gani Abdul Jameel & Usama Ahmed & Feraih S. Alenazey & Chul-Jin Lee, 2020. "Conceptual Design Development of Coal-to-Methanol Process with Carbon Capture and Utilization," Energies, MDPI, vol. 13(23), pages 1-21, December.
    8. Safder, Usman & Loy-Benitez, Jorge & Yoo, ChangKyoo, 2024. "Techno-economic assessment of a novel integrated multigeneration system to synthesize e-methanol and green hydrogen in a carbon-neutral context," Energy, Elsevier, vol. 290(C).
    9. Valery Vodovozov & Zoja Raud & Eduard Petlenkov, 2022. "Review of Energy Challenges and Horizons of Hydrogen City Buses," Energies, MDPI, vol. 15(19), pages 1-27, September.
    10. Serrano, José Ramón & Arnau, Francisco José & García-Cuevas, Luis Miguel & Gutiérrez, Fabio Alberto, 2022. "Thermo-economic analysis of an oxygen production plant powered by an innovative energy recovery system," Energy, Elsevier, vol. 255(C).
    11. Gu, Hongfei & Liu, Jianzi & Zhou, Xingchen & Wu, Qiwei & Liu, Yaodong & Yu, Shuaixian & Qiu, Wenying & Xu, Jianguo, 2023. "Modelling of a novel electricity and methanol co-generation using heat recovery and CO2 capture: Comprehensive thermodynamic, economic, and environmental analyses," Energy, Elsevier, vol. 278(C).
    12. Ren, Bo-Ping & Xu, Yi-Peng & Huang, Yu-Wei & She, Chen & Sun, Bo, 2023. "Methanol production from natural gas reforming and CO2 capturing process, simulation, design, and technical-economic analysis," Energy, Elsevier, vol. 263(PC).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dongliang, Wang & Wenliang, Meng & Huairong, Zhou & Guixian, Li & Yong, Yang & Hongwei, Li, 2021. "Green hydrogen coupling with CO2 utilization of coal-to-methanol for high methanol productivity and low CO2 emission," Energy, Elsevier, vol. 231(C).
    2. Li, Guang & Chang, Yuxue & Liu, Tao & Yu, Zhongliang & Liu, Zheyu & Liu, Fan & Ma, Shuqi & Weng, Yujing & Zhang, Yulong, 2020. "Hydrogen element flow and economic analyses of a coal direct chemical looping hydrogen generation process," Energy, Elsevier, vol. 206(C).
    3. Zhu, Lin & He, Yangdong & Li, Luling & Lv, Liping & He, Jingling, 2018. "Thermodynamic assessment of SNG and power polygeneration with the goal of zero CO2 emission," Energy, Elsevier, vol. 149(C), pages 34-46.
    4. Zhou, Huairong & Li, Hongwei & Duan, Runhao & Yang, Qingchun, 2020. "An integrated scheme of coal-assisted oil shale efficient pyrolysis and high-value conversion of pyrolysis oil," Energy, Elsevier, vol. 196(C).
    5. Farajollahi, Hossein & Hossainpour, Siamak, 2023. "Techno-economic assessment of biomass and coal co-fueled chemical looping combustion unit integrated with supercritical CO2 cycle and Organic Rankine cycle," Energy, Elsevier, vol. 274(C).
    6. Ding, Bingqing & Makowski, Marek & Nahorski, Zbigniew & Ren, Hongtao & Ma, Tieju, 2022. "Optimizing the technology pathway of China's liquid fuel production considering uncertain oil prices: A robust programming model," Energy Economics, Elsevier, vol. 115(C).
    7. Xiang, Yangyang & Zhou, Jingsong & Lin, Bowen & Xue, Xiaoao & Tian, Xingtao & Luo, Zhongyang, 2015. "Exergetic evaluation of renewable light olefins production from biomass via synthetic methanol," Applied Energy, Elsevier, vol. 157(C), pages 499-507.
    8. Qin, Shiyue & Wang, Ming & Cui, Hongyou & Li, Zhihe & Yi, Weiming, 2022. "Opportunities for renewable electricity utilization in coal to liquid fuels process: Thermodynamic and techo-economic analysis," Energy, Elsevier, vol. 239(PA).
    9. Wang, Dandan & Li, Sheng & He, Song & Gao, Lin, 2019. "Coal to substitute natural gas based on combined coal-steam gasification and one-step methanation," Applied Energy, Elsevier, vol. 240(C), pages 851-859.
    10. Yang, Qingchun & Zhang, Dawei & Zhou, Huairong & Zhang, Chenwei, 2018. "Process simulation, analysis and optimization of a coal to ethylene glycol process," Energy, Elsevier, vol. 155(C), pages 521-534.
    11. Yang, Qingchun & Yang, Qing & Xu, Simin & Zhang, Dawei & Liu, Chengling & Zhou, Huairong, 2021. "Optimal design, exergy and economic analyses of coal-to-ethylene glycol process coupling different shale gas reforming technologies," Energy, Elsevier, vol. 228(C).
    12. Siriwardane, Ranjani & Benincosa, William & Riley, Jarrett & Tian, Hanjing & Richards, George, 2016. "Investigation of reactions in a fluidized bed reactor during chemical looping combustion of coal/steam with copper oxide-iron oxide-alumina oxygen carrier," Applied Energy, Elsevier, vol. 183(C), pages 1550-1564.
    13. He, Yangdong & Zhu, Lin & Li, Luling & Rao, Dong, 2019. "Life-cycle assessment of SNG and power generation: The role of implement of chemical looping combustion for carbon capture," Energy, Elsevier, vol. 172(C), pages 777-786.
    14. Huo, Hailong & Liu, Xunliang & Wen, Zhi & Lou, Guofeng & Dou, Ruifeng & Su, Fuyong & Zhou, Wenning & Jiang, Zeyi, 2021. "Case study of a novel low rank coal to calcium carbide process based on techno-economic assessment," Energy, Elsevier, vol. 228(C).
    15. Zhou, Huairong & Qian, Yu & Kraslawski, Andrzej & Yang, Qingchun & Yang, Siyu, 2017. "Life-cycle assessment of alternative liquid fuels production in China," Energy, Elsevier, vol. 139(C), pages 507-522.
    16. Ben-Mansour, R. & Li, H. & Habib, M.A., 2017. "Effects of oxygen carrier mole fraction, velocity distribution on conversion performance using an experimentally validated mathematical model of a CLC fuel reactor," Applied Energy, Elsevier, vol. 208(C), pages 803-819.
    17. Meng, Wenliang & Wang, Dongliang & Zhou, Huairong & Yang, Yong & Li, Hongwei & Liao, Zuwei & Yang, Siyu & Hong, Xiaodong & Li, Guixian, 2023. "Carbon dioxide from oxy-fuel coal-fired power plant integrated green ammonia for urea synthesis: Process modeling, system analysis, and techno-economic evaluation," Energy, Elsevier, vol. 278(C).
    18. Chen, Shiyi & Lior, Noam & Xiang, Wenguo, 2015. "Coal gasification integration with solid oxide fuel cell and chemical looping combustion for high-efficiency power generation with inherent CO2 capture," Applied Energy, Elsevier, vol. 146(C), pages 298-312.
    19. Lane, Blake & Kinnon, Michael Mac & Shaffer, Brendan & Samuelsen, Scott, 2022. "Deployment planning tool for environmentally sensitive heavy-duty vehicles and fueling infrastructure," Energy Policy, Elsevier, vol. 171(C).
    20. Taner, Tolga & Sivrioglu, Mecit, 2015. "Energy–exergy analysis and optimisation of a model sugar factory in Turkey," Energy, Elsevier, vol. 93(P1), pages 641-654.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:203:y:2020:i:c:s036054422030983x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.