IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v208y2017icp803-819.html
   My bibliography  Save this article

Effects of oxygen carrier mole fraction, velocity distribution on conversion performance using an experimentally validated mathematical model of a CLC fuel reactor

Author

Listed:
  • Ben-Mansour, R.
  • Li, H.
  • Habib, M.A.

Abstract

Due to the severity of the worldwide climate change problem and the ocean acidification problem, chemical looping combustion (CLC) technology is studied worldwide by researchers in order to meet the urgency of carbon emission reduction after its concept has been put forward. An experimentally validated computer model has been implemented in Ansys-Fluent code with the most appropriate kinetic model implemented in User Define Functions. The validated model has been used to carry out a numerical study on a model fuel reactor using CaSO4 as oxygen carrier and H2 as fuel; is conducted in the present work. Effects of mole fraction of CaS, operating temperature, superficial feeding velocity magnitude of fuel and the diameter of oxygen carrier particles were discussed. The results indicate that the superficial feeding velocity of gaseous fuel has significant effects on the flow condition with fuel reactor and conversion performance, while operating temperature mainly affects the fuel conversion. The effects of particle diameter on flow condition within FR are obvious but insignificant on conversion performance of fuel. The mole fraction of CaS has the least effect among these three parameters. Several velocity distributions are also studied. The rectangle-trianble distributor results in better bubbles distributions, but the gain of higher fuel conversion rate is insignificant due to the low chemical activity of OC used in this study.

Suggested Citation

  • Ben-Mansour, R. & Li, H. & Habib, M.A., 2017. "Effects of oxygen carrier mole fraction, velocity distribution on conversion performance using an experimentally validated mathematical model of a CLC fuel reactor," Applied Energy, Elsevier, vol. 208(C), pages 803-819.
  • Handle: RePEc:eee:appene:v:208:y:2017:i:c:p:803-819
    DOI: 10.1016/j.apenergy.2017.09.067
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626191731351X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.09.067?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Coppola, Antonio & Solimene, Roberto & Bareschino, Piero & Salatino, Piero, 2015. "Mathematical modeling of a two-stage fuel reactor for chemical looping combustion with oxygen uncoupling of solid fuels," Applied Energy, Elsevier, vol. 157(C), pages 449-461.
    2. Yazdanpanah, Mahdi & Forret, Ann & Gauthier, Thierry, 2015. "Impact of size and temperature on the hydrodynamics of chemical looping combustion," Applied Energy, Elsevier, vol. 157(C), pages 416-421.
    3. Nandy, Anirban & Loha, Chanchal & Gu, Sai & Sarkar, Pinaki & Karmakar, Malay K. & Chatterjee, Pradip K., 2016. "Present status and overview of Chemical Looping Combustion technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 597-619.
    4. Riley, Jarrett & Siriwardane, Ranjani & Tian, Hanjing & Benincosa, William & Poston, James, 2017. "Kinetic analysis of the interactions between calcium ferrite and coal char for chemical looping gasification applications: Identifying reduction routes and modes of oxygen transfer," Applied Energy, Elsevier, vol. 201(C), pages 94-110.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cerciello, Francesca & Coppola, Antonio & Lacovig, Paolo & Senneca, Osvalda & Salatino, Piero, 2021. "Characterization of surface-oxides on char under periodically changing oxidation/desorption conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    2. Benincosa, William & Siriwardane, Ranjani & Tian, Hanjing & Riley, Jarrett & Poston, James, 2020. "A particle-scale reduction model of copper iron manganese oxide with CO for chemical looping combustion," Applied Energy, Elsevier, vol. 262(C).
    3. Iloeje, Chukwunwike O. & Zhao, Zhenlong & Ghoniem, Ahmed F., 2017. "A reduced fidelity model for the rotary chemical looping combustion reactor," Applied Energy, Elsevier, vol. 190(C), pages 725-739.
    4. Lei, Zhiping & Yan, Jingchong & Fang, Jia & Shui, Hengfu & Ren, Shibiao & Wang, Zhicai & Li, Zhanku & Kong, Ying & Kang, Shigang, 2021. "Catalytic combustion of coke and NO reduction in-situ under the action of Fe, Fe–CaO and Fe–CeO2," Energy, Elsevier, vol. 216(C).
    5. Rajabi, Mahsa & Mehrpooya, Mehdi & Haibo, Zhao & Huang, Zhen, 2019. "Chemical looping technology in CHP (combined heat and power) and CCHP (combined cooling heating and power) systems: A critical review," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    6. Lu, Xuao & Rahman, Ryad A. & Lu, Dennis Y. & Ridha, Firas N. & Duchesne, Marc A. & Tan, Yewen & Hughes, Robin W., 2016. "Pressurized chemical looping combustion with CO: Reduction reactivity and oxygen-transport capacity of ilmenite ore," Applied Energy, Elsevier, vol. 184(C), pages 132-139.
    7. Yin, Weijie & Wang, Shuai & Zhang, Kai & He, Yurong, 2020. "Numerical investigation of in situ gasification chemical looping combustion of biomass in a fluidized bed reactor," Renewable Energy, Elsevier, vol. 151(C), pages 216-225.
    8. Wang, Haiming & Liu, Guicai & Veksha, Andrei & Giannis, Apostolos & Lim, Teik-Thye & Lisak, Grzegorz, 2021. "Effective H2S control during chemical looping combustion by iron ore modified with alkaline earth metal oxides," Energy, Elsevier, vol. 218(C).
    9. Miller, Duane D. & Siriwardane, Ranjani, 2018. "CaFe2O4 oxygen carrier characterization during the partial oxidation of coal in the chemical looping gasification application," Applied Energy, Elsevier, vol. 224(C), pages 708-716.
    10. Chein, Rei-Yu & Hsu, Wen-Huai, 2019. "Thermodynamic analysis of syngas production via chemical looping dry reforming of methane," Energy, Elsevier, vol. 180(C), pages 535-547.
    11. Wang, Xudong & Shao, Yali & Jin, Baosheng, 2021. "Thermodynamic evaluation and modelling of an auto-thermal hybrid system of chemical looping combustion and air separation for power generation coupling with CO2 cycles," Energy, Elsevier, vol. 236(C).
    12. Mancusi, E. & Bareschino, P. & Brachi, P. & Coppola, A. & Ruoppolo, G. & Urciuolo, M. & Pepe, F., 2021. "Feasibility of an integrated biomass-based CLC combustion and a renewable-energy-based methanol production systems," Renewable Energy, Elsevier, vol. 179(C), pages 29-36.
    13. Farajollahi, Hossein & Hossainpour, Siamak, 2023. "Techno-economic assessment of biomass and coal co-fueled chemical looping combustion unit integrated with supercritical CO2 cycle and Organic Rankine cycle," Energy, Elsevier, vol. 274(C).
    14. Adnan, Muflih A. & Azis, Muhammad Mufti & Quddus, Mohammad R. & Hossain, Mohammad M., 2018. "Integrated liquid fuel based chemical looping combustion – parametric study for efficient power generation and CO2 capture," Applied Energy, Elsevier, vol. 228(C), pages 2398-2406.
    15. Nandy, Anirban & Loha, Chanchal & Gu, Sai & Sarkar, Pinaki & Karmakar, Malay K. & Chatterjee, Pradip K., 2016. "Present status and overview of Chemical Looping Combustion technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 597-619.
    16. Siriwardane, Ranjani & Riley, Jarrett & Atallah, Chris, 2022. "CO2 utilization potential of a novel calcium ferrite based looping process fueled with coal: Experimental evaluation of various coal feedstocks and thermodynamic integrated process analysis," Applied Energy, Elsevier, vol. 323(C).
    17. Khakpoor, Nima & Mostafavi, Ehsan & Mahinpey, Nader & De la Hoz Siegler, Hector, 2019. "Oxygen transport capacity and kinetic study of ilmenite ores for methane chemical-looping combustion," Energy, Elsevier, vol. 169(C), pages 329-337.
    18. Zhang, Jinzhi & He, Tao & Wang, Zhiqi & Zhu, Min & Zhang, Ke & Li, Bin & Wu, Jinhu, 2017. "The search of proper oxygen carriers for chemical looping partial oxidation of carbon," Applied Energy, Elsevier, vol. 190(C), pages 1119-1125.
    19. Eunhye Song & Daegi Kim & Cheol-Jin Jeong & Do-Yong Kim, 2019. "A Kinetic Study on Combustible Coastal Debris Pyrolysis via Thermogravimetric Analysis," Energies, MDPI, vol. 12(5), pages 1-10, March.
    20. Yang, Jie & Ma, Liping & Yang, Jing & Liu, Hongpan & Liu, Shengyu & Yang, Yingchun & Mu, Liusen & Wei, Yi & Ao, Ran & Guo, Zhiying & Dai, Quxiu & Wang, Huiming, 2019. "Thermodynamic and kinetic analysis of CuO-CaSO4 oxygen carrier in chemical looping gasification," Energy, Elsevier, vol. 188(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:208:y:2017:i:c:p:803-819. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.