Thermodynamic assessment of SNG and power polygeneration with the goal of zero CO2 emission
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2018.02.032
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Fan, Junming & Zhu, Lin & Hong, Hui & Jiang, Qiongqiong & Jin, Hongguang, 2017. "A thermodynamic and environmental performance of in-situ gasification of chemical looping combustion for power generation using ilmenite with different coals and comparison with other coal-driven powe," Energy, Elsevier, vol. 119(C), pages 1171-1180.
- Zhu, Lin & He, Yangdong & Li, Luling & Wu, Pengbin, 2018. "Tech-economic assessment of second-generation CCS: Chemical looping combustion," Energy, Elsevier, vol. 144(C), pages 915-927.
- Vasudevan, Suraj & Farooq, Shamsuzzaman & Karimi, Iftekhar A. & Saeys, Mark & Quah, Michael C.G. & Agrawal, Rakesh, 2016. "Energy penalty estimates for CO2 capture: Comparison between fuel types and capture-combustion modes," Energy, Elsevier, vol. 103(C), pages 709-714.
- Lyngfelt, Anders, 2014. "Chemical-looping combustion of solid fuels – Status of development," Applied Energy, Elsevier, vol. 113(C), pages 1869-1873.
- Li, Sheng & Jin, Hongguang & Gao, Lin & Zhang, Xiaosong, 2014. "Exergy analysis and the energy saving mechanism for coal to synthetic/substitute natural gas and power cogeneration system without and with CO2 capture," Applied Energy, Elsevier, vol. 130(C), pages 552-561.
- He, Chang & Feng, Xiao & Chu, Khim Hoong, 2013. "Process modeling and thermodynamic analysis of Lurgi fixed-bed coal gasifier in an SNG plant," Applied Energy, Elsevier, vol. 111(C), pages 742-757.
- Ding, Yanjun & Han, Weijian & Chai, Qinhu & Yang, Shuhong & Shen, Wei, 2013. "Coal-based synthetic natural gas (SNG): A solution to China’s energy security and CO2 reduction?," Energy Policy, Elsevier, vol. 55(C), pages 445-453.
- Pérez-Fortes, M. & Bojarski, A.D. & Velo, E. & Nougués, J.M. & Puigjaner, L., 2009. "Conceptual model and evaluation of generated power and emissions in an IGCC plant," Energy, Elsevier, vol. 34(10), pages 1721-1732.
- Kang, Do Won & Jang, Hyuck Jun & Kim, Tong Seop, 2014. "Using compressor discharge air bypass to enhance power generation of a steam-injected gas turbine for combined heat and power," Energy, Elsevier, vol. 76(C), pages 390-399.
- Jorge E. Preciado & John J. Ortiz-Martinez & Juan C. Gonzalez-Rivera & Rocio Sierra-Ramirez & Gerardo Gordillo, 2012. "Simulation of Synthesis Gas Production from Steam Oxygen Gasification of Colombian Coal Using Aspen Plus ®," Energies, MDPI, vol. 5(12), pages 1-17, November.
- Vitasari, Caecilia R. & Jurascik, Martin & Ptasinski, Krzysztof J., 2011. "Exergy analysis of biomass-to-synthetic natural gas (SNG) process via indirect gasification of various biomass feedstock," Energy, Elsevier, vol. 36(6), pages 3825-3837.
- Li, Sheng & Jin, Hongguang & Gao, Lin, 2013. "Cogeneration of substitute natural gas and power from coal by moderate recycle of the chemical unconverted gas," Energy, Elsevier, vol. 55(C), pages 658-667.
- Ridha, Firas N. & Duchesne, Marc A. & Lu, Xuao & Lu, Dennis Y. & Filippou, Dimitrios & Hughes, Robin W., 2016. "Characterization of an ilmenite ore for pressurized chemical looping combustion," Applied Energy, Elsevier, vol. 163(C), pages 323-333.
- Li, Sheng & Gao, Lin & Jin, Hongguang, 2017. "Realizing low life cycle energy use and GHG emissions in coal based polygeneration with CO2 capture," Applied Energy, Elsevier, vol. 194(C), pages 161-171.
- Fan, Junming & Hong, Hui & Zhu, Lin & Jiang, Qiongqiong & Jin, Hongguang, 2017. "Thermodynamic and environmental evaluation of biomass and coal co-fuelled gasification chemical looping combustion with CO2 capture for combined cooling, heating and power production," Applied Energy, Elsevier, vol. 195(C), pages 861-876.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Antar, Elie & Robert, Etienne, 2024. "Thermodynamic analysis of small-scale polygeneration systems producing natural gas, electricity, heat, and carbon dioxide from biomass," Energy, Elsevier, vol. 290(C).
- He, Yangdong & Zhu, Lin & Li, Luling & Rao, Dong, 2019. "Life-cycle assessment of SNG and power generation: The role of implement of chemical looping combustion for carbon capture," Energy, Elsevier, vol. 172(C), pages 777-786.
- Wu, Junnian & Wang, Na, 2020. "Exploring avoidable carbon emissions by reducing exergy destruction based on advanced exergy analysis: A case study," Energy, Elsevier, vol. 206(C).
- Kun, Zhang & He, Demin & Guan, Jun & Zhang, Qiumin, 2019. "Thermodynamic analysis of chemical looping gasification coupled with lignite pyrolysis," Energy, Elsevier, vol. 166(C), pages 807-818.
- Shi, Bin & Wen, Fang & Wu, Wei, 2020. "Performance evaluation of air-blown IGCC polygeneration plants using chemical looping hydrogen generation and methanol synthesis loop," Energy, Elsevier, vol. 200(C).
- Chyou, Yau-Pin & Chiu, Hsiu-Mei & Chen, Po-Chuang & Chien, Hsiu-Yun & Wang, Ting, 2023. "Coal-derived synthetic natural gas as an alternative energy carrier for application to produce power --- comparison of integrated vs. non-integrated processes," Energy, Elsevier, vol. 282(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- He, Yangdong & Zhu, Lin & Li, Luling & Rao, Dong, 2019. "Life-cycle assessment of SNG and power generation: The role of implement of chemical looping combustion for carbon capture," Energy, Elsevier, vol. 172(C), pages 777-786.
- Yi, Qun & Wu, Guo-sheng & Gong, Min-hui & Huang, Yi & Feng, Jie & Hao, Yan-hong & Li, Wen-ying, 2017. "A feasibility study for CO2 recycle assistance with coke oven gas to synthetic natural gas," Applied Energy, Elsevier, vol. 193(C), pages 149-161.
- Fan, Junming & Hong, Hui & Jin, Hongguang, 2018. "Biomass and coal co-feed power and SNG polygeneration with chemical looping combustion to reduce carbon footprint for sustainable energy development: Process simulation and thermodynamic assessment," Renewable Energy, Elsevier, vol. 125(C), pages 260-269.
- Rajabi, Mahsa & Mehrpooya, Mehdi & Haibo, Zhao & Huang, Zhen, 2019. "Chemical looping technology in CHP (combined heat and power) and CCHP (combined cooling heating and power) systems: A critical review," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
- Fan, Junming & Zhu, Lin & Hong, Hui & Jiang, Qiongqiong & Jin, Hongguang, 2017. "A thermodynamic and environmental performance of in-situ gasification of chemical looping combustion for power generation using ilmenite with different coals and comparison with other coal-driven powe," Energy, Elsevier, vol. 119(C), pages 1171-1180.
- Li, Sheng & Jin, Hongguang & Gao, Lin & Zhang, Xiaosong, 2014. "Exergy analysis and the energy saving mechanism for coal to synthetic/substitute natural gas and power cogeneration system without and with CO2 capture," Applied Energy, Elsevier, vol. 130(C), pages 552-561.
- Wu, Handong & Gao, Lin & Jin, Hongguang & Li, Sheng, 2017. "Low-energy-penalty principles of CO2 capture in polygeneration systems," Applied Energy, Elsevier, vol. 203(C), pages 571-581.
- Zhao, Ying-jie & Zhang, Yu-ke & Cui, Yang & Duan, Yuan-yuan & Huang, Yi & Wei, Guo-qiang & Mohamed, Usama & Shi, Li-juan & Yi, Qun & Nimmo, William, 2022. "Pinch combined with exergy analysis for heat exchange network and techno-economic evaluation of coal chemical looping combustion power plant with CO2 capture," Energy, Elsevier, vol. 238(PA).
- Yang, Qingchun & Zhang, Dawei & Zhou, Huairong & Zhang, Chenwei, 2018. "Process simulation, analysis and optimization of a coal to ethylene glycol process," Energy, Elsevier, vol. 155(C), pages 521-534.
- Zhou, Huairong & Meng, Wenliang & Wang, Dongliang & Li, Guixian & Li, Hongwei & Liu, Zhiqiang & Yang, Sheng, 2021. "A novel coal chemical looping gasification scheme for synthetic natural gas with low energy consumption for CO2 capture: Modelling, parameters optimization, and performance analysis," Energy, Elsevier, vol. 225(C).
- Lane, Blake & Kinnon, Michael Mac & Shaffer, Brendan & Samuelsen, Scott, 2022. "Deployment planning tool for environmentally sensitive heavy-duty vehicles and fueling infrastructure," Energy Policy, Elsevier, vol. 171(C).
- Li, Hengchong & Yang, Siyu & Zhang, Jun & Kraslawski, Andrzej & Qian, Yu, 2014. "Analysis of rationality of coal-based synthetic natural gas (SNG) production in China," Energy Policy, Elsevier, vol. 71(C), pages 180-188.
- Li, Sheng & Jin, Hongguang & Gao, Lin, 2013. "Cogeneration of substitute natural gas and power from coal by moderate recycle of the chemical unconverted gas," Energy, Elsevier, vol. 55(C), pages 658-667.
- Wang, Dandan & Li, Sheng & Liu, Feng & Gao, Lin & Sui, Jun, 2018. "Post combustion CO2 capture in power plant using low temperature steam upgraded by double absorption heat transformer," Applied Energy, Elsevier, vol. 227(C), pages 603-612.
- Timo Blumberg & Max Sorgenfrei & George Tsatsaronis, 2015. "Design and Assessment of an IGCC Concept with CO 2 Capture for the Co-Generation of Electricity and Substitute Natural Gas," Sustainability, MDPI, vol. 7(12), pages 1-13, December.
- Chen, Zhaohui & Gao, Shiqiu & Xu, Guangwen, 2017. "Simultaneous production of CH4-rich syngas and high-quality tar from lignite by the coupling of noncatalytic/catalytic pyrolysis and gasification in a pressurized integrated fluidized bed," Applied Energy, Elsevier, vol. 208(C), pages 1527-1537.
- Wang, Yuan & Zhu, Lin & He, Yangdong & Yu, Jianting & Zhang, Chaoli & Wang, Zi, 2023. "Comparative exergoeconomic analysis of atmosphere and pressurized CLC power plants coupled with supercritical CO2 cycle," Energy, Elsevier, vol. 265(C).
- Huang, Yi & Yi, Qun & Wei, Guo-qiang & Kang, Jing-xian & Li, Wen-ying & Feng, Jie & Xie, Ke-chang, 2018. "Energy use, greenhouse gases emission and cost effectiveness of an integrated high– and low–temperature Fisher–Tropsch synthesis plant from a lifecycle viewpoint," Applied Energy, Elsevier, vol. 228(C), pages 1009-1019.
- Farajollahi, Hossein & Hossainpour, Siamak, 2023. "Techno-economic assessment of biomass and coal co-fueled chemical looping combustion unit integrated with supercritical CO2 cycle and Organic Rankine cycle," Energy, Elsevier, vol. 274(C).
- Xiang, Dong & Jin, Tong & Lei, Xinru & Liu, Shuai & Jiang, Yong & Dong, Zhongbing & Tao, Quanbao & Cao, Yan, 2018. "The high efficient synthesis of natural gas from a joint-feedstock of coke-oven gas and pulverized coke via a chemical looping combustion scheme," Applied Energy, Elsevier, vol. 212(C), pages 944-954.
More about this item
Keywords
Polygeneration; Chemical looping combustion; SNG; CO2 capture; Energy and economic analysis;All these keywords.
JEL classification:
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:149:y:2018:i:c:p:34-46. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.