Modeling and techno-economic analysis of shale-to-liquid and coal-to-liquid fuels processes
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2016.04.108
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Sharifzadeh, M. & Wang, L. & Shah, N., 2015. "Decarbonisation of olefin processes using biomass pyrolysis oil," Applied Energy, Elsevier, vol. 149(C), pages 404-414.
- Man, Yi & Yang, Siyu & Zhang, Jun & Qian, Yu, 2014. "Conceptual design of coke-oven gas assisted coal to olefins process for high energy efficiency and low CO2 emission," Applied Energy, Elsevier, vol. 133(C), pages 197-205.
- Xiang, Dong & Qian, Yu & Man, Yi & Yang, Siyu, 2014. "Techno-economic analysis of the coal-to-olefins process in comparison with the oil-to-olefins process," Applied Energy, Elsevier, vol. 113(C), pages 639-647.
- Li, Xiuxi & Zhou, Huairong & Wang, Yajun & Qian, Yu & Yang, Siyu, 2015. "Thermoeconomic analysis of oil shale retorting processes with gas or solid heat carrier," Energy, Elsevier, vol. 87(C), pages 605-614.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Zhou, Huairong & Qian, Yu & Kraslawski, Andrzej & Yang, Qingchun & Yang, Siyu, 2017. "Life-cycle assessment of alternative liquid fuels production in China," Energy, Elsevier, vol. 139(C), pages 507-522.
- Li, Guang & Chang, Yuxue & Liu, Tao & Yu, Zhongliang & Liu, Zheyu & Liu, Fan & Ma, Shuqi & Weng, Yujing & Zhang, Yulong, 2020. "Hydrogen element flow and economic analyses of a coal direct chemical looping hydrogen generation process," Energy, Elsevier, vol. 206(C).
- Qin, Shiyue & Chang, Shiyan & Yao, Qiang, 2018. "Modeling, thermodynamic and techno-economic analysis of coal-to-liquids process with different entrained flow coal gasifiers," Applied Energy, Elsevier, vol. 229(C), pages 413-432.
- Bokun, Chen & Yu, Qian & Siyu, Yang, 2019. "Integration of thermo-vapor compressors with phenol and ammonia recovery process for coal gasification wastewater treatment system," Energy, Elsevier, vol. 166(C), pages 108-117.
- Qin, Shiyue & Wang, Ming & Cui, Hongyou & Li, Zhihe & Yi, Weiming, 2022. "Opportunities for renewable electricity utilization in coal to liquid fuels process: Thermodynamic and techo-economic analysis," Energy, Elsevier, vol. 239(PA).
- Yang, Qingchun & Yang, Qing & Xu, Simin & Zhang, Dawei & Liu, Chengling & Zhou, Huairong, 2021. "Optimal design, exergy and economic analyses of coal-to-ethylene glycol process coupling different shale gas reforming technologies," Energy, Elsevier, vol. 228(C).
- Kun, Zhang & He, Demin & Guan, Jun & Zhang, Qiumin, 2019. "Thermodynamic analysis of chemical looping gasification coupled with lignite pyrolysis," Energy, Elsevier, vol. 166(C), pages 807-818.
- Dongliang, Wang & Wenliang, Meng & Huairong, Zhou & Guixian, Li & Yong, Yang & Hongwei, Li, 2021. "Green hydrogen coupling with CO2 utilization of coal-to-methanol for high methanol productivity and low CO2 emission," Energy, Elsevier, vol. 231(C).
- Ding, Bingqing & Makowski, Marek & Nahorski, Zbigniew & Ren, Hongtao & Ma, Tieju, 2022. "Optimizing the technology pathway of China's liquid fuel production considering uncertain oil prices: A robust programming model," Energy Economics, Elsevier, vol. 115(C).
- Zhang, Yueling & Li, Junjie & Yang, Xiaoxiao, 2021. "Comprehensive competitiveness assessment of four coal-to-liquid routes and conventional oil refining route in China," Energy, Elsevier, vol. 235(C).
- Qin, Shiyue & Chang, Shiyan, 2017. "Modeling, thermodynamic and techno-economic analysis of coke production process with waste heat recovery," Energy, Elsevier, vol. 141(C), pages 435-450.
- Zhao, Jinyang & Yu, Yadong & Ren, Hongtao & Makowski, Marek & Granat, Janusz & Nahorski, Zbigniew & Ma, Tieju, 2022. "How the power-to-liquid technology can contribute to reaching carbon neutrality of the China's transportation sector?," Energy, Elsevier, vol. 261(PA).
- Yang, Xianyu & Chen, Shuya & Shi, Yanping & Feng, Ruimin & Cai, Jihua & Jiang, Guosheng, 2019. "CFD and DEM modelling of particles plugging in shale pores," Energy, Elsevier, vol. 174(C), pages 1026-1038.
- Yang, Qingchun & Zhang, Dawei & Zhou, Huairong & Zhang, Chenwei, 2018. "Process simulation, analysis and optimization of a coal to ethylene glycol process," Energy, Elsevier, vol. 155(C), pages 521-534.
- Zhang, Dongqiang & Duan, Runhao & Li, Hongwei & Yang, Qingchun & Zhou, Huairong, 2020. "Optimal design, thermodynamic, cost and CO2 emission analyses of coal-to-methanol process integrated with chemical looping air separation and hydrogen technology," Energy, Elsevier, vol. 203(C).
- Zhou, Huairong & Li, Hongwei & Duan, Runhao & Yang, Qingchun, 2020. "An integrated scheme of coal-assisted oil shale efficient pyrolysis and high-value conversion of pyrolysis oil," Energy, Elsevier, vol. 196(C).
- Kong, Zhaoyang & Dong, Xiucheng & Jiang, Qingzhe, 2019. "Forecasting the development of China's coal-to-liquid industry under security, economic and environmental constraints," Energy Economics, Elsevier, vol. 80(C), pages 253-266.
- Calderón, Andrés J. & Agnolucci, Paolo & Papageorgiou, Lazaros G., 2017. "An optimisation framework for the strategic design of synthetic natural gas (BioSNG) supply chains," Applied Energy, Elsevier, vol. 187(C), pages 929-955.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhou, Huairong & Li, Hongwei & Duan, Runhao & Yang, Qingchun, 2020. "An integrated scheme of coal-assisted oil shale efficient pyrolysis and high-value conversion of pyrolysis oil," Energy, Elsevier, vol. 196(C).
- Liu, Shuoshi & Yang, Lu & Chen, Bokun & Yang, Siyu & Qian, Yu, 2021. "Comprehensive energy analysis and integration of coal-based MTO process," Energy, Elsevier, vol. 214(C).
- Yang, Qingchun & Yang, Qing & Xu, Simin & Zhang, Dawei & Liu, Chengling & Zhou, Huairong, 2021. "Optimal design, exergy and economic analyses of coal-to-ethylene glycol process coupling different shale gas reforming technologies," Energy, Elsevier, vol. 228(C).
- Chen, Jianjun & Yang, Siyu & Qian, Yu, 2019. "A novel path for carbon-rich resource utilization with lower emission and higher efficiency: An integrated process of coal gasification and coking to methanol production," Energy, Elsevier, vol. 177(C), pages 304-318.
- Yang, Qingchun & Qian, Yu & Kraslawski, Andrzej & Zhou, Huairong & Yang, Siyu, 2016. "Advanced exergy analysis of an oil shale retorting process," Applied Energy, Elsevier, vol. 165(C), pages 405-415.
- Zhou, Huairong & Qian, Yu & Kraslawski, Andrzej & Yang, Qingchun & Yang, Siyu, 2017. "Life-cycle assessment of alternative liquid fuels production in China," Energy, Elsevier, vol. 139(C), pages 507-522.
- Yaser Khojasteh Salkuyeh & Thomas A. Adams II, 2015. "Co-Production of Olefins, Fuels, and Electricity from Conventional Pipeline Gas and Shale Gas with Near-Zero CO 2 Emissions. Part I: Process Development and Technical Performance," Energies, MDPI, vol. 8(5), pages 1-23, April.
- Chen, Xiangxiang & Sun, Zhuang & Kuo, Po-Chih & Aziz, Muhammad, 2024. "Carbon-negative olefins production from biomass and solar energy via direct chemical looping," Energy, Elsevier, vol. 289(C).
- Ameen Abdelrahman & Hassan A. Dosky & Hamdy F. M. Mohamed & Aly M. Radwan & Asmaa S. Hamouda, 2018. "Studying and Evaluating Sustainable Materials for Converting Plastic Waste to Fuel," Energy and Environment Research, Canadian Center of Science and Education, vol. 8(1), pages 1-73, June.
- Yi, Qun & Gong, Min-Hui & Huang, Yi & Feng, Jie & Hao, Yan-Hong & Zhang, Ji-Long & Li, Wen-Ying, 2016. "Process development of coke oven gas to methanol integrated with CO2 recycle for satisfactory techno-economic performance," Energy, Elsevier, vol. 112(C), pages 618-628.
- Zhao, Haitao & Jiang, Peng & Chen, Zhe & Ezeh, Collins I. & Hong, Yuanda & Guo, Yishan & Zheng, Chenghang & Džapo, Hrvoje & Gao, Xiang & Wu, Tao, 2019. "Improvement of fuel sources and energy products flexibility in coal power plants via energy-cyber-physical-systems approach," Applied Energy, Elsevier, vol. 254(C).
- Xu, Zhongming & Fang, Chenhao & Ma, Tieju, 2020. "Analysis of China’s olefin industry using a system optimization model considering technological learning and energy consumption reduction," Energy, Elsevier, vol. 191(C).
- Lee, Jechan & Yang, Xiao & Cho, Seong-Heon & Kim, Jae-Kon & Lee, Sang Soo & Tsang, Daniel C.W. & Ok, Yong Sik & Kwon, Eilhann E., 2017. "Pyrolysis process of agricultural waste using CO2 for waste management, energy recovery, and biochar fabrication," Applied Energy, Elsevier, vol. 185(P1), pages 214-222.
- Uribe-Soto, Wilmar & Portha, Jean-François & Commenge, Jean-Marc & Falk, Laurent, 2017. "A review of thermochemical processes and technologies to use steelworks off-gases," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 809-823.
- Wolfersdorf, Christian & Boblenz, Kristin & Pardemann, Robert & Meyer, Bernd, 2015. "Syngas-based annex concepts for chemical energy storage and improving flexibility of pulverized coal combustion power plants," Applied Energy, Elsevier, vol. 156(C), pages 618-627.
- Fan, Jing-Li & Yu, Pengwei & Li, Kai & Xu, Mao & Zhang, Xian, 2022. "A levelized cost of hydrogen (LCOH) comparison of coal-to-hydrogen with CCS and water electrolysis powered by renewable energy in China," Energy, Elsevier, vol. 242(C).
- Kapsalyamova, Zhanna & Paltsev, Sergey, 2020. "Use of natural gas and oil as a source of feedstocks," Energy Economics, Elsevier, vol. 92(C).
- Chen, Jing-Ming & Yu, Biying & Wei, Yi-Ming, 2018. "Energy technology roadmap for ethylene industry in China," Applied Energy, Elsevier, vol. 224(C), pages 160-174.
- Man, Yi & Yang, Siyu & Zhang, Jun & Qian, Yu, 2014. "Conceptual design of coke-oven gas assisted coal to olefins process for high energy efficiency and low CO2 emission," Applied Energy, Elsevier, vol. 133(C), pages 197-205.
- Kang, Zhiqin & Zhao, Yangsheng & Yang, Dong, 2020. "Review of oil shale in-situ conversion technology," Applied Energy, Elsevier, vol. 269(C).
More about this item
Keywords
Techno-economic analysis; Shale-to-liquid; Coal-to-liquid; Heat network;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:109:y:2016:i:c:p:201-210. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.