IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v240y2019icp851-859.html
   My bibliography  Save this article

Coal to substitute natural gas based on combined coal-steam gasification and one-step methanation

Author

Listed:
  • Wang, Dandan
  • Li, Sheng
  • He, Song
  • Gao, Lin

Abstract

In the face of the requirement of clean coal utilization and greenhouse gas emission reduction, coal to substitute natural gas (SNG) production attracts increasing attention worldwide. This work proposed a coal-to-SNG process, which combines a high-efficiency coal-steam gasification and one-step methanation. Through regenerative unit, the sensible heat of the syngas can be recovered via the oxidant steam and then finally converted into chemical energy of syngas, and thereby the cold gas efficiency can be 8.8 percentage points higher than the traditional GE gasification. The H2/CO mole ratio of syngas leaving the gasifier is about 1.2 which can be used for one-step methanation directly and the traditional water gas shift process can be eliminated. Simulation and thermodynamic analysis of the whole plant are presented, and the experimental study of coke-steam gasification is carried out in a fixed bed reactor. Preliminary experiments show that when gasification temperature is higher than 1000 °C, the H2/CO ratio of the syngas is approximately 1.3–1.4. Thermodynamic analysis shows that the SNG conversion efficiency of the proposed process increases from 61.3% to 71.7% and the energy consumption for SNG product has been reduced from 84 GJ/t to 60.5 GJ/t, mainly due to the cold gas efficiency enhancement of gasification and elimination of water gas shift process. Besides, through the one-step methanation, the concentration of CO2 before CO2 separation unit increases from 31.1% to 43.2%, and the unit energy consumption in the CO2 capture decreases from 15.3 kJ/mol to 11.7 kJ/mol.

Suggested Citation

  • Wang, Dandan & Li, Sheng & He, Song & Gao, Lin, 2019. "Coal to substitute natural gas based on combined coal-steam gasification and one-step methanation," Applied Energy, Elsevier, vol. 240(C), pages 851-859.
  • Handle: RePEc:eee:appene:v:240:y:2019:i:c:p:851-859
    DOI: 10.1016/j.apenergy.2019.02.084
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919303848
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.02.084?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Esmaili, Ehsan & Mostafavi, Ehsan & Mahinpey, Nader, 2016. "Economic assessment of integrated coal gasification combined cycle with sorbent CO2 capture," Applied Energy, Elsevier, vol. 169(C), pages 341-352.
    2. Ronald W. Breault, 2010. "Gasification Processes Old and New: A Basic Review of the Major Technologies," Energies, MDPI, vol. 3(2), pages 1-25, February.
    3. Qin, Shiyue & Chang, Shiyan & Yao, Qiang, 2018. "Modeling, thermodynamic and techno-economic analysis of coal-to-liquids process with different entrained flow coal gasifiers," Applied Energy, Elsevier, vol. 229(C), pages 413-432.
    4. Li, Sheng & Jin, Hongguang & Gao, Lin & Zhang, Xiaosong, 2014. "Exergy analysis and the energy saving mechanism for coal to synthetic/substitute natural gas and power cogeneration system without and with CO2 capture," Applied Energy, Elsevier, vol. 130(C), pages 552-561.
    5. He, Chang & Feng, Xiao & Chu, Khim Hoong, 2013. "Process modeling and thermodynamic analysis of Lurgi fixed-bed coal gasifier in an SNG plant," Applied Energy, Elsevier, vol. 111(C), pages 742-757.
    6. Yi, Qun & Wu, Guo-sheng & Gong, Min-hui & Huang, Yi & Feng, Jie & Hao, Yan-hong & Li, Wen-ying, 2017. "A feasibility study for CO2 recycle assistance with coke oven gas to synthetic natural gas," Applied Energy, Elsevier, vol. 193(C), pages 149-161.
    7. Touretzky, Cara R. & McGuffin, Dana L. & Ziesmer, Jena C. & Baldea, Michael, 2016. "The effect of distributed electricity generation using natural gas on the electric and natural gas grids," Applied Energy, Elsevier, vol. 177(C), pages 500-514.
    8. -, 2009. "The economics of climate change," Sede Subregional de la CEPAL para el Caribe (Estudios e Investigaciones) 38679, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    9. Crow, Daniel J.G. & Giarola, Sara & Hawkes, Adam D., 2018. "A dynamic model of global natural gas supply," Applied Energy, Elsevier, vol. 218(C), pages 452-469.
    10. Xu, Shisen & Ren, Yongqiang & Wang, Baomin & Xu, Yue & Chen, Liang & Wang, Xiaolong & Xiao, Tiancun, 2014. "Development of a novel 2-stage entrained flow coal dry powder gasifier," Applied Energy, Elsevier, vol. 113(C), pages 318-323.
    11. Li, Sheng & Ji, Xiaozhou & Zhang, Xiaosong & Gao, Lin & Jin, Hongguang, 2014. "Coal to SNG: Technical progress, modeling and system optimization through exergy analysis," Applied Energy, Elsevier, vol. 136(C), pages 98-109.
    12. Gradisher, Logan & Dutcher, Bryce & Fan, Maohong, 2015. "Catalytic hydrogen production from fossil fuels via the water gas shift reaction," Applied Energy, Elsevier, vol. 139(C), pages 335-349.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Song He & Yawen Zheng, 2024. "CO 2 Capture Cost Reduction Potential of the Coal-Fired Power Plants under High Penetration of Renewable Power in China," Energies, MDPI, vol. 17(9), pages 1-15, April.
    2. Adnan, Muflih A. & Hidayat, Arif & Hossain, Mohammad M. & Muraza, Oki, 2021. "Transformation of low-rank coal to clean syngas and power via thermochemical route," Energy, Elsevier, vol. 236(C).
    3. Zhang, Quancong & Guo, Xiaoxue & Yao, Xu & Cao, Zhikai & Sha, Yong & Chen, Binghui & Zhou, Hua, 2020. "Modeling, simulation, and systematic analysis of high-temperature adiabatic fixed-bed process of CO methanation with novel catalysts," Applied Energy, Elsevier, vol. 279(C).
    4. Enrico Alberto Cutillo & Claudio Tregambi & Piero Bareschino & Erasmo Mancusi & Gaetano Continillo & Francesco Pepe, 2024. "Energetic, Exergetic, and Techno-Economic Analysis of A Bioenergy with Carbon Capture and Utilization Process via Integrated Torrefaction–CLC–Methanation," Energies, MDPI, vol. 17(11), pages 1-21, June.
    5. Adela Bâra & Simona-Vasilica Oprea & Niculae Oprea, 2023. "How Fast to Avoid Carbon Emissions: A Holistic View on the RES, Storage and Non-RES Replacement in Romania," IJERPH, MDPI, vol. 20(6), pages 1-17, March.
    6. Li, Zhengkuan & Tian, Songfeng & Zhang, Du & Chang, Chengzhi & Zhang, Qian & Zhang, Peijie, 2022. "Optimization study on improving energy efficiency of power cycle system of staged coal gasification coupled with supercritical carbon dioxide," Energy, Elsevier, vol. 239(PC).
    7. Kim, Mukyeong & Ye, Insoo & Jo, Hyunbin & Ryu, Changkook & Kim, Bongkeun & Lee, Jeongsoo, 2020. "New reduced-order model optimized for online dynamic simulation of a Shell coal gasifier," Applied Energy, Elsevier, vol. 263(C).
    8. Yang, Dongtai & Li, Sheng & He, Song, 2024. "Zero/negative carbon emission coal and biomass staged co-gasification power generation system via biomass heating," Applied Energy, Elsevier, vol. 357(C).
    9. Shevyrev, S.A. & Mazheiko, N.E. & Yakutin, S.K. & Strizhak, P.A., 2022. "Investigation of characteristics of gas and coke residue for the regime of quasi- and non-stationary steam gasification of coal in a fluidized bed: Part 1," Energy, Elsevier, vol. 251(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yi, Qun & Wu, Guo-sheng & Gong, Min-hui & Huang, Yi & Feng, Jie & Hao, Yan-hong & Li, Wen-ying, 2017. "A feasibility study for CO2 recycle assistance with coke oven gas to synthetic natural gas," Applied Energy, Elsevier, vol. 193(C), pages 149-161.
    2. Chen, Zhaohui & Gao, Shiqiu & Xu, Guangwen, 2017. "Simultaneous production of CH4-rich syngas and high-quality tar from lignite by the coupling of noncatalytic/catalytic pyrolysis and gasification in a pressurized integrated fluidized bed," Applied Energy, Elsevier, vol. 208(C), pages 1527-1537.
    3. Wu, Junnian & Wang, Na, 2020. "Exploring avoidable carbon emissions by reducing exergy destruction based on advanced exergy analysis: A case study," Energy, Elsevier, vol. 206(C).
    4. Yang, Qingchun & Zhang, Dawei & Zhou, Huairong & Zhang, Chenwei, 2018. "Process simulation, analysis and optimization of a coal to ethylene glycol process," Energy, Elsevier, vol. 155(C), pages 521-534.
    5. Huo, Hailong & Liu, Xunliang & Wen, Zhi & Lou, Guofeng & Dou, Ruifeng & Su, Fuyong & Zhou, Wenning & Jiang, Zeyi, 2021. "Case study of a novel low rank coal to calcium carbide process based on techno-economic assessment," Energy, Elsevier, vol. 228(C).
    6. Zhang, Quancong & Guo, Xiaoxue & Yao, Xu & Cao, Zhikai & Sha, Yong & Chen, Binghui & Zhou, Hua, 2020. "Modeling, simulation, and systematic analysis of high-temperature adiabatic fixed-bed process of CO methanation with novel catalysts," Applied Energy, Elsevier, vol. 279(C).
    7. Zhou, Huairong & Meng, Wenliang & Wang, Dongliang & Li, Guixian & Li, Hongwei & Liu, Zhiqiang & Yang, Sheng, 2021. "A novel coal chemical looping gasification scheme for synthetic natural gas with low energy consumption for CO2 capture: Modelling, parameters optimization, and performance analysis," Energy, Elsevier, vol. 225(C).
    8. Samiran, Nor Afzanizam & Jaafar, Mohammad Nazri Mohd & Ng, Jo-Han & Lam, Su Shiung & Chong, Cheng Tung, 2016. "Progress in biomass gasification technique – With focus on Malaysian palm biomass for syngas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1047-1062.
    9. Timo Blumberg & Max Sorgenfrei & George Tsatsaronis, 2015. "Design and Assessment of an IGCC Concept with CO 2 Capture for the Co-Generation of Electricity and Substitute Natural Gas," Sustainability, MDPI, vol. 7(12), pages 1-13, December.
    10. Zhu, Lin & He, Yangdong & Li, Luling & Lv, Liping & He, Jingling, 2018. "Thermodynamic assessment of SNG and power polygeneration with the goal of zero CO2 emission," Energy, Elsevier, vol. 149(C), pages 34-46.
    11. Xiang, Dong & Jin, Tong & Lei, Xinru & Liu, Shuai & Jiang, Yong & Dong, Zhongbing & Tao, Quanbao & Cao, Yan, 2018. "The high efficient synthesis of natural gas from a joint-feedstock of coke-oven gas and pulverized coke via a chemical looping combustion scheme," Applied Energy, Elsevier, vol. 212(C), pages 944-954.
    12. Qin, Shiyue & Zhang, Xuzhi & Wang, Ming & Cui, Hongyou & Li, Zhihe & Yi, Weiming, 2021. "Comparison of BGL and Lurgi gasification for coal to liquid fuels (CTL): Process modeling, simulation and thermodynamic analysis," Energy, Elsevier, vol. 229(C).
    13. Fan, Junming & Hong, Hui & Jin, Hongguang, 2018. "Biomass and coal co-feed power and SNG polygeneration with chemical looping combustion to reduce carbon footprint for sustainable energy development: Process simulation and thermodynamic assessment," Renewable Energy, Elsevier, vol. 125(C), pages 260-269.
    14. Xiang, Dong & Huang, Weiqing & Huang, Peng, 2018. "A novel coke-oven gas-to-natural gas and hydrogen process by integrating chemical looping hydrogen with methanation," Energy, Elsevier, vol. 165(PB), pages 1024-1033.
    15. Bassano, Claudia & Deiana, Paolo & Vilardi, Giorgio & Verdone, Nicola, 2020. "Modeling and economic evaluation of carbon capture and storage technologies integrated into synthetic natural gas and power-to-gas plants," Applied Energy, Elsevier, vol. 263(C).
    16. Li, Sheng & Gao, Lin & Jin, Hongguang, 2017. "Realizing low life cycle energy use and GHG emissions in coal based polygeneration with CO2 capture," Applied Energy, Elsevier, vol. 194(C), pages 161-171.
    17. Sunel Kumar & Zhihua Wang & Yong He & Yanqun Zhu & Kefa Cen, 2022. "Numerical Analysis for Coal Gasification Performance in a Lab-Scale Gasifier: Effects of the Wall Temperature and Oxygen/Coal Ratio," Energies, MDPI, vol. 15(22), pages 1-15, November.
    18. Jeong, Hyo Jae & Seo, Dong Kyun & Hwang, Jungho, 2014. "CFD modeling for coal size effect on coal gasification in a two-stage commercial entrained-bed gasifier with an improved char gasification model," Applied Energy, Elsevier, vol. 123(C), pages 29-36.
    19. Yang, Qingchun & Xu, Simin & Zhang, Jinliang & Liu, Chenglin & Zhang, Dawei & Zhou, Huairong & Mei, Shumei & Gao, Minglin & Liu, Hongyan, 2021. "Thermodynamic and techno-economic analyses of a novel integrated process of coal gasification and methane tri-reforming to ethylene glycol with low carbon emission and high efficiency," Energy, Elsevier, vol. 229(C).
    20. Zhang, Dongqiang & Duan, Runhao & Li, Hongwei & Yang, Qingchun & Zhou, Huairong, 2020. "Optimal design, thermodynamic, cost and CO2 emission analyses of coal-to-methanol process integrated with chemical looping air separation and hydrogen technology," Energy, Elsevier, vol. 203(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:240:y:2019:i:c:p:851-859. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.