IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v173y2019icp809-819.html
   My bibliography  Save this article

Effect of nitrogen doping on the electrochemical performance of resorcinol-formaldehyde based carbon aerogels as electrode material for supercapacitor applications

Author

Listed:
  • Mirzaeian, Mojtaba
  • Abbas, Qaisar
  • Gibson, Des
  • Mazur, Michal

Abstract

Nitrogen doped resorcinol/formaldehyde carbon aerogels with controlled nitrogen content are synthesized by controlling the resorcinol/melamine molar ratio (R/M) during the synthesis of aerogel precursors. The carbons were used as electrode materials in an electrochemical capacitor using 6 M KOH solution as electrolyte. All samples exhibited amorphous structure with low degree of graphitization. The maximum specific capacitance of 208 Fg-1 was observed after doping of the carbon with nitrogen at R/M = 80. Drop in solution and charge transfer resistances from 0.57Ω to 0.15Ω and 0.05Ω–0.04Ω was also observed respectively, with the drop in contact angles from 123° to 103° for the carbon doped with nitrogen at R/M = 80. BET results showed that the pore volume and surface area of carbon increase after N-doping, with a BET surface area of 841 m2 g−1 at R/M = 80. This R/M ratio is an optimum ratio at which incorporation of nitrogen into the carbon matrix improves the capacitive performance of cell as a result of improved porosity/wettability/conductivity/active sites of the electrode. Doping at higher nitrogen concentrations (R/M < 80) decreased the specific capacitance of the cell significantly due to decreased conductivity of carbon and suppression of the hopping rate of dopant.

Suggested Citation

  • Mirzaeian, Mojtaba & Abbas, Qaisar & Gibson, Des & Mazur, Michal, 2019. "Effect of nitrogen doping on the electrochemical performance of resorcinol-formaldehyde based carbon aerogels as electrode material for supercapacitor applications," Energy, Elsevier, vol. 173(C), pages 809-819.
  • Handle: RePEc:eee:energy:v:173:y:2019:i:c:p:809-819
    DOI: 10.1016/j.energy.2019.02.108
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219303068
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.02.108?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lee, Seul-Yi & Kim, Ji-Il & Park, Soo-Jin, 2014. "Activated carbon nanotubes/polyaniline composites as supercapacitor electrodes," Energy, Elsevier, vol. 78(C), pages 298-303.
    2. Wang, Kai & Li, Liwei & Zhang, Tiezhu & Liu, Zaifei, 2014. "Nitrogen-doped graphene for supercapacitor with long-term electrochemical stability," Energy, Elsevier, vol. 70(C), pages 612-617.
    3. Dubal, Deepak P. & Holze, Rudolf, 2013. "All-solid-state flexible thin film supercapacitor based on Mn3O4 stacked nanosheets with gel electrolyte," Energy, Elsevier, vol. 51(C), pages 407-412.
    4. Pourjavadi, Ali & Doroudian, Mohadeseh & Ahadpour, Amirkhashayar & Pourbadiei, Behzad, 2018. "Preparation of flexible and free-standing graphene-based current collector via a new and facile self-assembly approach: Leading to a high performance porous graphene/polyaniline supercapacitor," Energy, Elsevier, vol. 152(C), pages 178-189.
    5. Yaumi, A.L. & Bakar, M.Z. Abu & Hameed, B.H., 2017. "Reusable nitrogen-doped mesoporous carbon adsorbent for carbon dioxide adsorption in fixed-bed," Energy, Elsevier, vol. 138(C), pages 776-784.
    6. Iqbal, Muhammad Faisal & Ashiq, Muhammad Naeem & Hassan, Mahmood-Ul & Nawaz, Rahat & Masood, Aneeqa & Razaq, Aamir, 2018. "Excellent electrochemical behavior of graphene oxide based aluminum sulfide nanowalls for supercapacitor applications," Energy, Elsevier, vol. 159(C), pages 151-159.
    7. Bao, Jinpeng & Liang, Chen & Lu, Haiyan & Lin, Haibo & Shi, Zhan & Feng, Shouhua & Bu, Qijing, 2018. "Facile fabrication of porous carbon microtube with surrounding carbon skeleton for long-life electrochemical capacitive energy storage," Energy, Elsevier, vol. 155(C), pages 899-908.
    8. Miao, Fujun & Shao, Changlu & Li, Xinghua & Lu, Na & Wang, Kexin & Zhang, Xin & Liu, Yichun, 2016. "Polyaniline-coated electrospun carbon nanofibers with high mass loading and enhanced capacitive performance as freestanding electrodes for flexible solid-state supercapacitors," Energy, Elsevier, vol. 95(C), pages 233-241.
    9. Karandikar, Parashuram Balwant & Talange, Dhananjay Balu & Mhaskar, Uday Prakashrao & Bansal, Ramesh, 2012. "Development, modeling and characterization of aqueous metal oxide based supercapacitor," Energy, Elsevier, vol. 40(1), pages 131-138.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Bo & Wang, Jingbo & Sang, Yiyan & Yu, Lei & Shu, Hongchun & Li, Shengnan & He, Tingyi & Yang, Lei & Zhang, Xiaoshun & Yu, Tao, 2019. "Applications of supercapacitor energy storage systems in microgrid with distributed generators via passive fractional-order sliding-mode control," Energy, Elsevier, vol. 187(C).
    2. Mojtaba Mirzaeian & Nazym Akhanova & Maratbek Gabdullin & Zhanar Kalkozova & Aida Tulegenova & Shyryn Nurbolat & Khabibulla Abdullin, 2020. "Improvement of the Pseudocapacitive Performance of Cobalt Oxide-Based Electrodes for Electrochemical Capacitors," Energies, MDPI, vol. 13(19), pages 1-16, October.
    3. Meng, Qi & Chen, Wenjiao & Wu, Linzhen & Lei, Jiehong & Liu, Xiaonan & Zhu, Wenkun & Duan, Tao, 2019. "A strategy of making waste profitable: Nitrogen doped cigarette butt derived carbon for high performance supercapacitors," Energy, Elsevier, vol. 189(C).
    4. Mojtaba Mirzaeian & Qaisar Abbas & Michael. R. C. Hunt & Peter Hall, 2020. "Pseudocapacitive Effect of Carbons Doped with Different Functional Groups as Electrode Materials for Electrochemical Capacitors," Energies, MDPI, vol. 13(21), pages 1-21, October.
    5. Abdelkareem, Mohammad Ali & Abbas, Qaisar & Sayed, Enas Taha & Shehata, N. & Parambath, J.B.M. & Alami, Abdul Hai & Olabi, A.G., 2024. "Recent advances on metal-organic frameworks (MOFs) and their applications in energy conversion devices: Comprehensive review," Energy, Elsevier, vol. 299(C).
    6. Olabi, Abdul Ghani & Abbas, Qaisar & Shinde, Pragati A. & Abdelkareem, Mohammad Ali, 2023. "Rechargeable batteries: Technological advancement, challenges, current and emerging applications," Energy, Elsevier, vol. 266(C).
    7. Olabi, Abdul Ghani & Abbas, Qaisar & Al Makky, Ahmed & Abdelkareem, Mohammad Ali, 2022. "Supercapacitors as next generation energy storage devices: Properties and applications," Energy, Elsevier, vol. 248(C).
    8. Golkhatmi, Sanaz Zarabi & Sedghi, Arman & Miankushki, Hoda Nourmohammadi & Khalaj, Maryam, 2021. "Structural properties and supercapacitive performance evaluation of the nickel oxide/graphene/polypyrrole hybrid ternary nanocomposite in aqueous and organic electrolytes," Energy, Elsevier, vol. 214(C).
    9. Zheng, Guoxu & Wang, Dongxing & Tian, Shiyi & Ren, Mingyuan & Song, Mingxin, 2021. "Effect of microstructure and contact interfaces of cobalt MOFs-derived carbon matrix composite electrode materials on lithium storage performance," Energy, Elsevier, vol. 222(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuan, Chuanjun & Lin, Haibo & Lu, Haiyan & Xing, Endong & Zhang, Yusi & Xie, Bingyao, 2016. "Synthesis of hierarchically porous MnO2/rice husks derived carbon composite as high-performance electrode material for supercapacitors," Applied Energy, Elsevier, vol. 178(C), pages 260-268.
    2. Murashko, Kirill & Nevstrueva, Daria & Pihlajamäki, Arto & Koiranen, Tuomas & Pyrhönen, Juha, 2017. "Cellulose and activated carbon based flexible electrical double-layer capacitor electrode: Preparation and characterization," Energy, Elsevier, vol. 119(C), pages 435-441.
    3. Sieben, J.M. & Morallón, E. & Cazorla-Amorós, D., 2013. "Flexible ruthenium oxide-activated carbon cloth composites prepared by simple electrodeposition methods," Energy, Elsevier, vol. 58(C), pages 519-526.
    4. Ghosh, Sampad & Withanage, Sajeevi S. & Chamlagain, Bhim & Khondaker, Saiful I. & Harish, Sivasankaran & Saha, Bidyut Baran, 2020. "Low pressure sulfurization and characterization of multilayer MoS2 for potential applications in supercapacitors," Energy, Elsevier, vol. 203(C).
    5. Miao, Fujun & Shao, Changlu & Li, Xinghua & Lu, Na & Wang, Kexin & Zhang, Xin & Liu, Yichun, 2016. "Polyaniline-coated electrospun carbon nanofibers with high mass loading and enhanced capacitive performance as freestanding electrodes for flexible solid-state supercapacitors," Energy, Elsevier, vol. 95(C), pages 233-241.
    6. Kumar, Rajesh & Joanni, Ednan & Savu, Raluca & Pereira, Matheus S. & Singh, Rajesh K. & Constantino, Carlos J.L. & Kubota, Lauro T. & Matsuda, Atsunori & Moshkalev, Stanislav A., 2019. "Fabrication and electrochemical evaluation of micro-supercapacitors prepared by direct laser writing on free-standing graphite oxide paper," Energy, Elsevier, vol. 179(C), pages 676-684.
    7. Kim, Jongmin & Ju, Haeri & Inamdar, Akbar I. & Jo, Yongcheol & Han, J. & Kim, Hyungsang & Im, Hyunsik, 2014. "Synthesis and enhanced electrochemical supercapacitor properties of Ag–MnO2–polyaniline nanocomposite electrodes," Energy, Elsevier, vol. 70(C), pages 473-477.
    8. Ensafi, Ali A. & Ahmadi, Najmeh & Rezaei, Behzad & Abdolmaleki, Amir & Mahmoudian, Manzar, 2018. "A new quaternary nanohybrid composite electrode for a high-performance supercapacitor," Energy, Elsevier, vol. 164(C), pages 707-721.
    9. Golkhatmi, Sanaz Zarabi & Sedghi, Arman & Miankushki, Hoda Nourmohammadi & Khalaj, Maryam, 2021. "Structural properties and supercapacitive performance evaluation of the nickel oxide/graphene/polypyrrole hybrid ternary nanocomposite in aqueous and organic electrolytes," Energy, Elsevier, vol. 214(C).
    10. Patil, Bebi & Ahn, Suhyun & Park, Changyong & Song, Hyeonjun & Jeong, Youngjin & Ahn, Heejoon, 2018. "Simple and novel strategy to fabricate ultra-thin, lightweight, stackable solid-state supercapacitors based on MnO2-incorporated CNT-web paper," Energy, Elsevier, vol. 142(C), pages 608-616.
    11. Shao, Zhou & Li, Hongji & Li, Mingji & Li, Cuiping & Qu, Changqing & Yang, Baohe, 2015. "Fabrication of polyaniline nanowire/TiO2 nanotube array electrode for supercapacitors," Energy, Elsevier, vol. 87(C), pages 578-585.
    12. Huang, Ke-Jing & Wang, Lan & Zhang, Ji-Zong & Wang, Ling-Ling & Mo, Yan-Ping, 2014. "One-step preparation of layered molybdenum disulfide/multi-walled carbon nanotube composites for enhanced performance supercapacitor," Energy, Elsevier, vol. 67(C), pages 234-240.
    13. Li, Li & Zheng, Keqing & Ni, Meng & Leung, Michael K.H. & Xuan, Jin, 2015. "Partial modification of flow-through porous electrodes in microfluidic fuel cell," Energy, Elsevier, vol. 88(C), pages 563-571.
    14. Xu, Le & Zhao, Yan & Lian, Jiabiao & Xu, Yuanguo & Bao, Jian & Qiu, Jingxia & Xu, Li & Xu, Hui & Hua, Mingqing & Li, Huaming, 2017. "Morphology controlled preparation of ZnCo2O4 nanostructures for asymmetric supercapacitor with ultrahigh energy density," Energy, Elsevier, vol. 123(C), pages 296-304.
    15. Alves, Luís & Pereira, Vítor & Lagarteira, Tiago & Mendes, Adélio, 2021. "Catalytic methane decomposition to boost the energy transition: Scientific and technological advancements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    16. Xu, Ying & Ren, Li & Zhang, Zhongping & Tang, Yuejin & Shi, Jing & Xu, Chen & Li, Jingdong & Pu, Dongsheng & Wang, Zhuang & Liu, Huajun & Chen, Lei, 2018. "Analysis of the loss and thermal characteristics of a SMES (Superconducting Magnetic Energy Storage) magnet with three practical operating conditions," Energy, Elsevier, vol. 143(C), pages 372-384.
    17. Kuzmenko, Volodymyr & Naboka, Olga & Haque, Mazharul & Staaf, Henrik & Göransson, Gert & Gatenholm, Paul & Enoksson, Peter, 2015. "Sustainable carbon nanofibers/nanotubes composites from cellulose as electrodes for supercapacitors," Energy, Elsevier, vol. 90(P2), pages 1490-1496.
    18. Raoof, Jahan-Bakhsh & Hosseini, Sayed Reza & Ojani, Reza & Mandegarzad, Sakineh, 2015. "MOF-derived Cu/nanoporous carbon composite and its application for electro-catalysis of hydrogen evolution reaction," Energy, Elsevier, vol. 90(P1), pages 1075-1081.
    19. Christinelli, W.A. & da Trindade, L.G. & Trench, A.B. & Quintans, C.S. & Paranhos, C.M. & Pereira, E.C., 2017. "High-performance energy storage of poly (o-methoxyaniline) film using an ionic liquid as electrolyte," Energy, Elsevier, vol. 141(C), pages 1829-1835.
    20. Li, Zijiong & Liu, Ping & Yun, Gaoqian & Shi, Kai & Lv, Xiaowei & Li, Kun & Xing, Jianhua & Yang, Baocheng, 2014. "3D (Three-dimensional) sandwich-structured of ZnO (zinc oxide)/rGO (reduced graphene oxide)/ZnO for high performance supercapacitors," Energy, Elsevier, vol. 69(C), pages 266-271.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:173:y:2019:i:c:p:809-819. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.