IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v177y2021icp82-94.html
   My bibliography  Save this article

Structural changes and electrochemical properties of lacquer wood activated carbon prepared by phosphoric acid-chemical activation for supercapacitor applications

Author

Listed:
  • Hu, Sheng-Chun
  • Cheng, Jie
  • Wang, Wu-Ping
  • Sun, Guo-Tao
  • Hu, Li-Le
  • Zhu, Ming-Qiang
  • Huang, Xiao-Hua

Abstract

Lacquer wood (LW) goes through one-step and two-step H3PO4 activation process to prepare activated carbons (ACs) at different temperature, and its performance was evaluated by testing CV, EIS, GCD and cycling respect to an electrode material in supercapacitors. The performance of lacquer wood activated carbon prepared by different activation methods and temperature (300, 400, 500, 600, 700, and 800 °C) was studied, and the influence on its electrochemical properties provides valuable guidance for the high-efficient energy utilization of lacquer wood. The results showed that the AC generated via one-step activation process at 400 °C demonstrate excellent specific surface area (SBET 1609.09 m2/g) than those from two-step activation method. Besides, the biomass-derived ACs presented overall better electrochemistry characteristic than those from charcoal-derived ACs. The largest specific capacitance (354 F/g) was obtained in the ACs-based electrodes which was generated from one-step activation process (activated at 600 °C). After 10000 cycles, its capacity retention reached 95.3%, which provides a meaningful guidance into the application of energy storage supercapacitors. This study proves that the LW derived ACs are promising electrodes of the high-performance supercapacitors, which is beneficial for value-added and industrial supercapacitors application of lacquer wood ACs.

Suggested Citation

  • Hu, Sheng-Chun & Cheng, Jie & Wang, Wu-Ping & Sun, Guo-Tao & Hu, Li-Le & Zhu, Ming-Qiang & Huang, Xiao-Hua, 2021. "Structural changes and electrochemical properties of lacquer wood activated carbon prepared by phosphoric acid-chemical activation for supercapacitor applications," Renewable Energy, Elsevier, vol. 177(C), pages 82-94.
  • Handle: RePEc:eee:renene:v:177:y:2021:i:c:p:82-94
    DOI: 10.1016/j.renene.2021.05.113
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121007965
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.05.113?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. González, Ander & Goikolea, Eider & Barrena, Jon Andoni & Mysyk, Roman, 2016. "Review on supercapacitors: Technologies and materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1189-1206.
    2. Sahoo, K. & Hawkins, G.L. & Yao, X.A. & Samples, K. & Mani, S., 2016. "GIS-based biomass assessment and supply logistics system for a sustainable biorefinery: A case study with cotton stalks in the Southeastern US," Applied Energy, Elsevier, vol. 182(C), pages 260-273.
    3. Zhang, Wenli & Lin, Nan & Liu, Debo & Xu, Jinhui & Sha, Jinxin & Yin, Jian & Tan, Xiaobo & Yang, Huiping & Lu, Haiyan & Lin, Haibo, 2017. "Direct carbonization of rice husk to prepare porous carbon for supercapacitor applications," Energy, Elsevier, vol. 128(C), pages 618-625.
    4. Iqbal, Muhammad Faisal & Ashiq, Muhammad Naeem & Hassan, Mahmood-Ul & Nawaz, Rahat & Masood, Aneeqa & Razaq, Aamir, 2018. "Excellent electrochemical behavior of graphene oxide based aluminum sulfide nanowalls for supercapacitor applications," Energy, Elsevier, vol. 159(C), pages 151-159.
    5. Cheng, Jie & Hu, Sheng-Chun & Sun, Guo-Tao & Kang, Kang & Zhu, Ming-Qiang & Geng, Zeng-Chao, 2021. "Comparison of activated carbons prepared by one-step and two-step chemical activation process based on cotton stalk for supercapacitors application," Energy, Elsevier, vol. 215(PB).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sun, Hao & Ma, Mingzhe & Fan, Mengmeng & Sun, Kang & Xu, Wei & Wang, Kui & Li, Baojun & Jiang, Jianchun, 2022. "Controllable preparation of biomass derived mesoporous activated carbon supported nano-CaO catalysts for biodiesel production," Energy, Elsevier, vol. 261(PB).
    2. Ozpinar, Pelin & Dogan, Ceren & Demiral, Hakan & Morali, Ugur & Erol, Salim & Samdan, Canan & Yildiz, Derya & Demiral, Ilknur, 2022. "Activated carbons prepared from hazelnut shell waste by phosphoric acid activation for supercapacitor electrode applications and comprehensive electrochemical analysis," Renewable Energy, Elsevier, vol. 189(C), pages 535-548.
    3. Bao, Qi & Zhang, Min & Li, Ju & Wang, Xiuzhang & Zhu, Mingqiang & Sun, Guotao, 2024. "The optimal micro- and meso-pores oriented development of Eucommia ulmoides oliver wood derived activated carbons for capacitive performance," Renewable Energy, Elsevier, vol. 225(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheng, Jie & Hu, Sheng-Chun & Sun, Guo-Tao & Kang, Kang & Zhu, Ming-Qiang & Geng, Zeng-Chao, 2021. "Comparison of activated carbons prepared by one-step and two-step chemical activation process based on cotton stalk for supercapacitors application," Energy, Elsevier, vol. 215(PB).
    2. Celiktas, Melih Soner & Alptekin, Fikret Muge, 2019. "Conversion of model biomass to carbon-based material with high conductivity by using carbonization," Energy, Elsevier, vol. 188(C).
    3. Sakthivel, Mani & Ramki, Settu & Chen, Shen-Ming & Ho, Kuo-Chuan, 2022. "Defect rich Se–CoWS2 as anode and banana flower skin-derived activated carbon channels with interconnected porous structure as cathode materials for asymmetric supercapacitor application," Energy, Elsevier, vol. 257(C).
    4. Olabi, Abdul Ghani & Abbas, Qaisar & Al Makky, Ahmed & Abdelkareem, Mohammad Ali, 2022. "Supercapacitors as next generation energy storage devices: Properties and applications," Energy, Elsevier, vol. 248(C).
    5. Ponce, M. Federico & Mamani, Arminda & Jerez, Florencia & Castilla, Josué & Ramos, Pamela B. & Acosta, Gerardo G. & Sardella, M. Fabiana & Bavio, Marcela A., 2022. "Activated carbon from olive tree pruning residue for symmetric solid-state supercapacitor," Energy, Elsevier, vol. 260(C).
    6. Bao, Qi & Zhang, Min & Li, Ju & Wang, Xiuzhang & Zhu, Mingqiang & Sun, Guotao, 2024. "The optimal micro- and meso-pores oriented development of Eucommia ulmoides oliver wood derived activated carbons for capacitive performance," Renewable Energy, Elsevier, vol. 225(C).
    7. Das, Himadry Shekhar & Tan, Chee Wei & Yatim, A.H.M., 2017. "Fuel cell hybrid electric vehicles: A review on power conditioning units and topologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 268-291.
    8. Chopin, Pierre & Guindé, Loïc & Causeret, François & Bergkvist, Göran & Blazy, Jean-Marc, 2019. "Integrating stakeholder preferences into assessment of scenarios for electricity production from locally produced biomass on a small island," Renewable Energy, Elsevier, vol. 131(C), pages 128-136.
    9. Chen, Dongfang & Pan, Lyuming & Pei, Pucheng & Huang, Shangwei & Ren, Peng & Song, Xin, 2021. "Carbon-coated oxygen vacancies-rich Co3O4 nanoarrays grow on nickel foam as efficient bifunctional electrocatalysts for rechargeable zinc-air batteries," Energy, Elsevier, vol. 224(C).
    10. Caizán-Juanarena, Leire & Sleutels, Tom & Borsje, Casper & ter Heijne, Annemiek, 2020. "Considerations for application of granular activated carbon as capacitive bioanode in bioelectrochemical systems," Renewable Energy, Elsevier, vol. 157(C), pages 782-792.
    11. Arkadiusz Dyjakon & Tomasz Noszczyk, 2019. "The Influence of Freezing Temperature Storage on the Mechanical Durability of Commercial Pellets from Biomass," Energies, MDPI, vol. 12(13), pages 1-13, July.
    12. Muhammad Yaseen & Muhammad Arif Khan Khattak & Muhammad Humayun & Muhammad Usman & Syed Shaheen Shah & Shaista Bibi & Bakhtiar Syed Ul Hasnain & Shah Masood Ahmad & Abbas Khan & Nasrullah Shah & Asif , 2021. "A Review of Supercapacitors: Materials Design, Modification, and Applications," Energies, MDPI, vol. 14(22), pages 1-40, November.
    13. Chen, Yi-di & Li, Suping & Ho, Shih-Hsin & Wang, Chengyu & Lin, Yen-Chang & Nagarajan, Dillirani & Chang, Jo-Shu & Ren, Nan-qi, 2018. "Integration of sludge digestion and microalgae cultivation for enhancing bioenergy and biorefinery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 76-90.
    14. Chen, Tingting & Luo, Lu & Luo, Lingcong & Deng, Jianping & Wu, Xi & Fan, Mizi & Du, Guanben & Weigang Zhao,, 2021. "High energy density supercapacitors with hierarchical nitrogen-doped porous carbon as active material obtained from bio-waste," Renewable Energy, Elsevier, vol. 175(C), pages 760-769.
    15. Chen, Yan & Huang, Zhenhua & Ai, Hongshan & Guo, Xingkun & Luo, Fan, 2021. "The Impact of GIS/GPS Network Information Systems on the Logistics Distribution Cost of Tobacco Enterprises," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 149(C).
    16. Jing, Wenlong & Lai, Chean Hung & Wong, Wallace S.H. & Wong, M.L. Dennis, 2018. "A comprehensive study of battery-supercapacitor hybrid energy storage system for standalone PV power system in rural electrification," Applied Energy, Elsevier, vol. 224(C), pages 340-356.
    17. Dou, Shumei & Li, Ping & Tan, Dan & Li, Huiqin & Ren, Lijun & Wei, Fenyan, 2021. "Synthesis and capacitance performances of Ni–Mn-Oxides as electrode materials for high-performance supercapacitors," Energy, Elsevier, vol. 227(C).
    18. Liu, Hongwei & Wang, Yongzhen & Lv, Liang & Liu, Xiao & Wang, Ziqi & Liu, Jun, 2023. "Oxygen-enriched hierarchical porous carbons derived from lignite for high-performance supercapacitors," Energy, Elsevier, vol. 269(C).
    19. Jan Banaś & Katarzyna Utnik-Banaś & Stanisław Zięba, 2024. "Optimizing Biomass Supply Chains to Power Plants under Ecological and Social Restrictions: Case Study from Poland," Energies, MDPI, vol. 17(13), pages 1-15, June.
    20. Alencar Franco de Souza & Fernando Lessa Tofoli & Enio Roberto Ribeiro, 2021. "Switched Capacitor DC-DC Converters: A Survey on the Main Topologies, Design Characteristics, and Applications," Energies, MDPI, vol. 14(8), pages 1-33, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:177:y:2021:i:c:p:82-94. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.