IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v67y2014icp234-240.html
   My bibliography  Save this article

One-step preparation of layered molybdenum disulfide/multi-walled carbon nanotube composites for enhanced performance supercapacitor

Author

Listed:
  • Huang, Ke-Jing
  • Wang, Lan
  • Zhang, Ji-Zong
  • Wang, Ling-Ling
  • Mo, Yan-Ping

Abstract

We report a simple strategy to prepare novel 2-dimensional graphene analog MoS2/MWCNT (molybdenum disulfide/multi-walled carbon nanotube) composites as electrode material for supercapacitor. The MoS2/MWCNT composites exhibit superior electrochemical performance to pure MWCNT and MoS2. The composite shows a high specific capacitance of 452.7 F g−1 at a current density of 1 A g−1, as compared to 69.2 F g−1 for MWCNT and 149.6 F g−1 for MoS2. In addition, the cycling measurements show that the MoS2/MWCNT composites maintain a specific capacitance of 412.2 F g−1 at 1 A g−1 after 1000 cycles corresponding to a reduction of capacitance of about 4.2%. The enhancement in supercapacitor is believed to be due to the layered MoS2/MWCNT conductive network which promotes not only efficient charge transport and facilitates the electrolyte diffusion, but also prevents effectively the volume expansion/contraction and aggregation of electroactive materials during charge-discharge process.

Suggested Citation

  • Huang, Ke-Jing & Wang, Lan & Zhang, Ji-Zong & Wang, Ling-Ling & Mo, Yan-Ping, 2014. "One-step preparation of layered molybdenum disulfide/multi-walled carbon nanotube composites for enhanced performance supercapacitor," Energy, Elsevier, vol. 67(C), pages 234-240.
  • Handle: RePEc:eee:energy:v:67:y:2014:i:c:p:234-240
    DOI: 10.1016/j.energy.2013.12.051
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544213011213
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2013.12.051?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dubal, Deepak P. & Holze, Rudolf, 2013. "All-solid-state flexible thin film supercapacitor based on Mn3O4 stacked nanosheets with gel electrolyte," Energy, Elsevier, vol. 51(C), pages 407-412.
    2. Wang, Kai & Zhang, Li & Ji, Bingcheng & Yuan, Jinlei, 2013. "The thermal analysis on the stackable supercapacitor," Energy, Elsevier, vol. 59(C), pages 440-444.
    3. Li, TingXian & Lee, Ju-Hyuk & Wang, RuZhu & Kang, Yong Tae, 2013. "Enhancement of heat transfer for thermal energy storage application using stearic acid nanocomposite with multi-walled carbon nanotubes," Energy, Elsevier, vol. 55(C), pages 752-761.
    4. Tamilarasan, P. & Ramaprabhu, S., 2013. "Graphene based all-solid-state supercapacitors with ionic liquid incorporated polyacrylonitrile electrolyte," Energy, Elsevier, vol. 51(C), pages 374-381.
    5. Karandikar, Parashuram Balwant & Talange, Dhananjay Balu & Mhaskar, Uday Prakashrao & Bansal, Ramesh, 2012. "Development, modeling and characterization of aqueous metal oxide based supercapacitor," Energy, Elsevier, vol. 40(1), pages 131-138.
    6. Nanfeng Zheng & Xianhui Bu & Pingyun Feng, 2003. "Synthetic design of crystalline inorganic chalcogenides exhibiting fast-ion conductivity," Nature, Nature, vol. 426(6965), pages 428-432, November.
    7. Jhan, Jing-Yi & Huang, Yu-Wei & Hsu, Chun-Han & Teng, Hsisheng & Kuo, Daniel & Kuo, Ping-Lin, 2013. "Three-dimensional network of graphene grown with carbon nanotubes as carbon support for fuel cells," Energy, Elsevier, vol. 53(C), pages 282-287.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pourjavadi, Ali & Doroudian, Mohadeseh & Ahadpour, Amirkhashayar & Pourbadiei, Behzad, 2018. "Preparation of flexible and free-standing graphene-based current collector via a new and facile self-assembly approach: Leading to a high performance porous graphene/polyaniline supercapacitor," Energy, Elsevier, vol. 152(C), pages 178-189.
    2. Iqbal, Muhammad Faisal & Ashiq, Muhammad Naeem & Hassan, Mahmood-Ul & Nawaz, Rahat & Masood, Aneeqa & Razaq, Aamir, 2018. "Excellent electrochemical behavior of graphene oxide based aluminum sulfide nanowalls for supercapacitor applications," Energy, Elsevier, vol. 159(C), pages 151-159.
    3. Mohd Nor, Najah Syahirah & Deraman, Mohamad & Omar, Ramli & Awitdrus, & Farma, Rakhmawati & Basri, Nur Hamizah & Mohd Dolah, Besek Nurdiana & Mamat, Nurul Fatin & Yatim, Baharudin & Md Daud, Mohd Nori, 2015. "Influence of gamma irradiation exposure on the performance of supercapacitor electrodes made from oil palm empty fruit bunches," Energy, Elsevier, vol. 79(C), pages 183-194.
    4. Hill, Frances A. & Havel, Timothy F. & Lashmore, David & Schauer, Mark & Livermore, Carol, 2014. "Storing energy and powering small systems with mechanical springs made of carbon nanotube yarn," Energy, Elsevier, vol. 76(C), pages 318-325.
    5. Meng, Qi & Chen, Wenjiao & Wu, Linzhen & Lei, Jiehong & Liu, Xiaonan & Zhu, Wenkun & Duan, Tao, 2019. "A strategy of making waste profitable: Nitrogen doped cigarette butt derived carbon for high performance supercapacitors," Energy, Elsevier, vol. 189(C).
    6. Hong, Wei & Wang, Jinqing & Li, Zhangpeng & Yang, Shengrong, 2015. "Fabrication of Co3O4@Co–Ni sulfides core/shell nanowire arrays as binder-free electrode for electrochemical energy storage," Energy, Elsevier, vol. 93(P1), pages 435-441.
    7. Ghosh, Sampad & Withanage, Sajeevi S. & Chamlagain, Bhim & Khondaker, Saiful I. & Harish, Sivasankaran & Saha, Bidyut Baran, 2020. "Low pressure sulfurization and characterization of multilayer MoS2 for potential applications in supercapacitors," Energy, Elsevier, vol. 203(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ghosh, Sampad & Withanage, Sajeevi S. & Chamlagain, Bhim & Khondaker, Saiful I. & Harish, Sivasankaran & Saha, Bidyut Baran, 2020. "Low pressure sulfurization and characterization of multilayer MoS2 for potential applications in supercapacitors," Energy, Elsevier, vol. 203(C).
    2. Wang, Kai & Li, Liwei & Zhang, Tiezhu & Liu, Zaifei, 2014. "Nitrogen-doped graphene for supercapacitor with long-term electrochemical stability," Energy, Elsevier, vol. 70(C), pages 612-617.
    3. Kim, Jongmin & Ju, Haeri & Inamdar, Akbar I. & Jo, Yongcheol & Han, J. & Kim, Hyungsang & Im, Hyunsik, 2014. "Synthesis and enhanced electrochemical supercapacitor properties of Ag–MnO2–polyaniline nanocomposite electrodes," Energy, Elsevier, vol. 70(C), pages 473-477.
    4. Iqbal, Muhammad Faisal & Ashiq, Muhammad Naeem & Hassan, Mahmood-Ul & Nawaz, Rahat & Masood, Aneeqa & Razaq, Aamir, 2018. "Excellent electrochemical behavior of graphene oxide based aluminum sulfide nanowalls for supercapacitor applications," Energy, Elsevier, vol. 159(C), pages 151-159.
    5. Murashko, Kirill & Nevstrueva, Daria & Pihlajamäki, Arto & Koiranen, Tuomas & Pyrhönen, Juha, 2017. "Cellulose and activated carbon based flexible electrical double-layer capacitor electrode: Preparation and characterization," Energy, Elsevier, vol. 119(C), pages 435-441.
    6. Sieben, J.M. & Morallón, E. & Cazorla-Amorós, D., 2013. "Flexible ruthenium oxide-activated carbon cloth composites prepared by simple electrodeposition methods," Energy, Elsevier, vol. 58(C), pages 519-526.
    7. Li, Zijiong & Liu, Ping & Yun, Gaoqian & Shi, Kai & Lv, Xiaowei & Li, Kun & Xing, Jianhua & Yang, Baocheng, 2014. "3D (Three-dimensional) sandwich-structured of ZnO (zinc oxide)/rGO (reduced graphene oxide)/ZnO for high performance supercapacitors," Energy, Elsevier, vol. 69(C), pages 266-271.
    8. Singh, Manoj K. & Suleman, Mohd & Kumar, Yogesh & Hashmi, S.A., 2015. "A novel configuration of electrical double layer capacitor with plastic crystal based gel polymer electrolyte and graphene nano-platelets as electrodes: A high rate performance," Energy, Elsevier, vol. 80(C), pages 465-473.
    9. Mirzaeian, Mojtaba & Abbas, Qaisar & Gibson, Des & Mazur, Michal, 2019. "Effect of nitrogen doping on the electrochemical performance of resorcinol-formaldehyde based carbon aerogels as electrode material for supercapacitor applications," Energy, Elsevier, vol. 173(C), pages 809-819.
    10. Jagadale, Ajay D. & Kumbhar, Vijay S. & Bulakhe, Ravindra N. & Lokhande, Chandrakant D., 2014. "Influence of electrodeposition modes on the supercapacitive performance of Co3O4 electrodes," Energy, Elsevier, vol. 64(C), pages 234-241.
    11. Xu, Le & Zhao, Yan & Lian, Jiabiao & Xu, Yuanguo & Bao, Jian & Qiu, Jingxia & Xu, Li & Xu, Hui & Hua, Mingqing & Li, Huaming, 2017. "Morphology controlled preparation of ZnCo2O4 nanostructures for asymmetric supercapacitor with ultrahigh energy density," Energy, Elsevier, vol. 123(C), pages 296-304.
    12. Yue, Gentian & Wang, Lei & Zhang, Xin'an & Wu, Jihuai & Jiang, Qiwei & Zhang, Weifeng & Huang, Miaoliang & Lin, Jianming, 2014. "Fabrication of high performance multi-walled carbon nanotubes/polypyrrole counter electrode for dye-sensitized solar cells," Energy, Elsevier, vol. 67(C), pages 460-467.
    13. Shaari, N. & Kamarudin, S.K., 2017. "Graphene in electrocatalyst and proton conductiong membrane in fuel cell applications: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 862-870.
    14. Yang, Haiyue & Wang, Yazhou & Yu, Qianqian & Cao, Guoliang & Sun, Xiaohan & Yang, Rue & Zhang, Qiong & Liu, Feng & Di, Xin & Li, Jian & Wang, Chengyu & Li, Guoliang, 2018. "Low-cost, three-dimension, high thermal conductivity, carbonized wood-based composite phase change materials for thermal energy storage," Energy, Elsevier, vol. 159(C), pages 929-936.
    15. Miao, Fujun & Shao, Changlu & Li, Xinghua & Lu, Na & Wang, Kexin & Zhang, Xin & Liu, Yichun, 2016. "Polyaniline-coated electrospun carbon nanofibers with high mass loading and enhanced capacitive performance as freestanding electrodes for flexible solid-state supercapacitors," Energy, Elsevier, vol. 95(C), pages 233-241.
    16. Wang, Huiru & Liu, Zhenyu & Wu, Huiying, 2017. "Entransy dissipation-based thermal resistance optimization of slab LHTES system with multiple PCMs arranged in a 2D array," Energy, Elsevier, vol. 138(C), pages 739-751.
    17. Zhang, P. & Xiao, X. & Ma, Z.W., 2016. "A review of the composite phase change materials: Fabrication, characterization, mathematical modeling and application to performance enhancement," Applied Energy, Elsevier, vol. 165(C), pages 472-510.
    18. Paul, John & Pandey, A.K. & Mishra, Yogeshwar Nath & Said, Zafar & Mishra, Yogendra Kumar & Ma, Zhenjun & Jacob, Jeeja & Kadirgama, K. & Samykano, M. & Tyagi, V.V., 2022. "Nano-enhanced organic form stable PCMs for medium temperature solar thermal energy harvesting: Recent progresses, challenges, and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    19. Li, T.X. & Xu, J.X. & Wu, D.L. & He, F. & Wang, R.Z., 2019. "High energy-density and power-density thermal storage prototype with hydrated salt for hot water and space heating," Applied Energy, Elsevier, vol. 248(C), pages 406-414.
    20. Tamilarasan, P. & Ramaprabhu, S., 2013. "Graphene based all-solid-state supercapacitors with ionic liquid incorporated polyacrylonitrile electrolyte," Energy, Elsevier, vol. 51(C), pages 374-381.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:67:y:2014:i:c:p:234-240. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.