IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i19p5228-d424916.html
   My bibliography  Save this article

Improvement of the Pseudocapacitive Performance of Cobalt Oxide-Based Electrodes for Electrochemical Capacitors

Author

Listed:
  • Mojtaba Mirzaeian

    (School of Computing, Engineering and Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, UK
    Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Al-Farabi Avenue 71, Almaty 050012, Kazakhstan)

  • Nazym Akhanova

    (National Nanotechnology Laboratory of Open Type (NNLOT), Al-Farabi Kazakh National University, Al-Farabi Avenue 71, Almaty 050012, Kazakhstan)

  • Maratbek Gabdullin

    (Research Center of Renewable Energy and Nanotechnology, Kazakh-British Technical University University, Tole bi st. 59, Almaty 050000, Kazakhstan)

  • Zhanar Kalkozova

    (National Nanotechnology Laboratory of Open Type (NNLOT), Al-Farabi Kazakh National University, Al-Farabi Avenue 71, Almaty 050012, Kazakhstan)

  • Aida Tulegenova

    (National Nanotechnology Laboratory of Open Type (NNLOT), Al-Farabi Kazakh National University, Al-Farabi Avenue 71, Almaty 050012, Kazakhstan)

  • Shyryn Nurbolat

    (National Nanotechnology Laboratory of Open Type (NNLOT), Al-Farabi Kazakh National University, Al-Farabi Avenue 71, Almaty 050012, Kazakhstan)

  • Khabibulla Abdullin

    (National Nanotechnology Laboratory of Open Type (NNLOT), Al-Farabi Kazakh National University, Al-Farabi Avenue 71, Almaty 050012, Kazakhstan)

Abstract

Cobalt oxide nanopowders are synthesized by the pyrolysis of aerosol particles of water solution of cobalt acetate. Cobalt nanopowder is obtained by subsequent reduction of obtained cobalt oxide by annealing under a hydrogen atmosphere. The average crystallite size of the synthesized porous particles ranged from 7 to 30 nm, depending on the synthesis temperature. The electrochemical characteristics of electrodes based on synthesized cobalt oxide and reduced cobalt oxide are investigated in an electrochemical cell using a 3.5 M KOH solution as the electrolyte. The results of electrochemical measurements show that the electrode based on reduced cobalt oxide (Re-Co 3 O 4 ) exhibits significantly higher capacity, and lower Faradaic charge–transfer and ion diffusion resistances when compared to the electrodes based on the initial cobalt oxide Co 3 O 4 . This observed effect is mainly due to a wide range of reversible redox transitions such as Co(II) ↔ Co(III) and Co(III) ↔ Co(IV) associated with different cobalt oxide/hydroxide species formed on the surface of metal particles during the cell operation; the small thickness of the oxide/hydroxide layer providing a high reaction rate, and also the presence of a metal skeleton leading to a low series resistance of the electrode.

Suggested Citation

  • Mojtaba Mirzaeian & Nazym Akhanova & Maratbek Gabdullin & Zhanar Kalkozova & Aida Tulegenova & Shyryn Nurbolat & Khabibulla Abdullin, 2020. "Improvement of the Pseudocapacitive Performance of Cobalt Oxide-Based Electrodes for Electrochemical Capacitors," Energies, MDPI, vol. 13(19), pages 1-16, October.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:19:p:5228-:d:424916
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/19/5228/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/19/5228/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. González, Ander & Goikolea, Eider & Barrena, Jon Andoni & Mysyk, Roman, 2016. "Review on supercapacitors: Technologies and materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1189-1206.
    2. Mirzaeian, Mojtaba & Abbas, Qaisar & Gibson, Des & Mazur, Michal, 2019. "Effect of nitrogen doping on the electrochemical performance of resorcinol-formaldehyde based carbon aerogels as electrode material for supercapacitor applications," Energy, Elsevier, vol. 173(C), pages 809-819.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mojtaba Mirzaeian, 2022. "High-Energy Electrochemical Capacitors," Energies, MDPI, vol. 15(10), pages 1-4, May.
    2. Mojtaba Mirzaeian & Qaisar Abbas & Michael. R. C. Hunt & Peter Hall, 2020. "Pseudocapacitive Effect of Carbons Doped with Different Functional Groups as Electrode Materials for Electrochemical Capacitors," Energies, MDPI, vol. 13(21), pages 1-21, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Olabi, Abdul Ghani & Abbas, Qaisar & Al Makky, Ahmed & Abdelkareem, Mohammad Ali, 2022. "Supercapacitors as next generation energy storage devices: Properties and applications," Energy, Elsevier, vol. 248(C).
    2. Das, Himadry Shekhar & Tan, Chee Wei & Yatim, A.H.M., 2017. "Fuel cell hybrid electric vehicles: A review on power conditioning units and topologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 268-291.
    3. Caizán-Juanarena, Leire & Sleutels, Tom & Borsje, Casper & ter Heijne, Annemiek, 2020. "Considerations for application of granular activated carbon as capacitive bioanode in bioelectrochemical systems," Renewable Energy, Elsevier, vol. 157(C), pages 782-792.
    4. Muhammad Yaseen & Muhammad Arif Khan Khattak & Muhammad Humayun & Muhammad Usman & Syed Shaheen Shah & Shaista Bibi & Bakhtiar Syed Ul Hasnain & Shah Masood Ahmad & Abbas Khan & Nasrullah Shah & Asif , 2021. "A Review of Supercapacitors: Materials Design, Modification, and Applications," Energies, MDPI, vol. 14(22), pages 1-40, November.
    5. Chen, Yi-di & Li, Suping & Ho, Shih-Hsin & Wang, Chengyu & Lin, Yen-Chang & Nagarajan, Dillirani & Chang, Jo-Shu & Ren, Nan-qi, 2018. "Integration of sludge digestion and microalgae cultivation for enhancing bioenergy and biorefinery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 76-90.
    6. Gallo, A.B. & Simões-Moreira, J.R. & Costa, H.K.M. & Santos, M.M. & Moutinho dos Santos, E., 2016. "Energy storage in the energy transition context: A technology review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 800-822.
    7. Krishnan, Syam G. & Arulraj, Arunachalam & Khalid, Mohammad & Reddy, M.V. & Jose, Rajan, 2021. "Energy storage in metal cobaltite electrodes: Opportunities & challenges in magnesium cobalt oxide," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    8. Celiktas, Melih Soner & Alptekin, Fikret Muge, 2019. "Conversion of model biomass to carbon-based material with high conductivity by using carbonization," Energy, Elsevier, vol. 188(C).
    9. Naseri, F. & Karimi, S. & Farjah, E. & Schaltz, E., 2022. "Supercapacitor management system: A comprehensive review of modeling, estimation, balancing, and protection techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    10. Chen, Tingting & Luo, Lu & Luo, Lingcong & Deng, Jianping & Wu, Xi & Fan, Mizi & Du, Guanben & Weigang Zhao,, 2021. "High energy density supercapacitors with hierarchical nitrogen-doped porous carbon as active material obtained from bio-waste," Renewable Energy, Elsevier, vol. 175(C), pages 760-769.
    11. Jing, Wenlong & Lai, Chean Hung & Wong, Wallace S.H. & Wong, M.L. Dennis, 2018. "A comprehensive study of battery-supercapacitor hybrid energy storage system for standalone PV power system in rural electrification," Applied Energy, Elsevier, vol. 224(C), pages 340-356.
    12. Dou, Shumei & Li, Ping & Tan, Dan & Li, Huiqin & Ren, Lijun & Wei, Fenyan, 2021. "Synthesis and capacitance performances of Ni–Mn-Oxides as electrode materials for high-performance supercapacitors," Energy, Elsevier, vol. 227(C).
    13. Hu, Sheng-Chun & Cheng, Jie & Wang, Wu-Ping & Sun, Guo-Tao & Hu, Li-Le & Zhu, Ming-Qiang & Huang, Xiao-Hua, 2021. "Structural changes and electrochemical properties of lacquer wood activated carbon prepared by phosphoric acid-chemical activation for supercapacitor applications," Renewable Energy, Elsevier, vol. 177(C), pages 82-94.
    14. Cansiz, Mustafa & Altinel, Dogay & Kurt, Gunes Karabulut, 2019. "Efficiency in RF energy harvesting systems: A comprehensive review," Energy, Elsevier, vol. 174(C), pages 292-309.
    15. Seman, Raja Noor Amalina Raja & Azam, Mohd Asyadi & Mohamad, Ahmad Azmin, 2017. "Systematic gap analysis of carbon nanotube-based lithium-ion batteries and electrochemical capacitors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 644-659.
    16. Alencar Franco de Souza & Fernando Lessa Tofoli & Enio Roberto Ribeiro, 2021. "Switched Capacitor DC-DC Converters: A Survey on the Main Topologies, Design Characteristics, and Applications," Energies, MDPI, vol. 14(8), pages 1-33, April.
    17. Yang, Bo & Wang, Jingbo & Sang, Yiyan & Yu, Lei & Shu, Hongchun & Li, Shengnan & He, Tingyi & Yang, Lei & Zhang, Xiaoshun & Yu, Tao, 2019. "Applications of supercapacitor energy storage systems in microgrid with distributed generators via passive fractional-order sliding-mode control," Energy, Elsevier, vol. 187(C).
    18. Zhang, Lei & Hu, Xiaosong & Wang, Zhenpo & Sun, Fengchun & Dorrell, David G., 2018. "A review of supercapacitor modeling, estimation, and applications: A control/management perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1868-1878.
    19. M. Mohamed Ismail & Zhong-Yun Hong & M. Arivanandhan & Thomas Chung-Kuang Yang & Guan-Ting Pan & Chao-Ming Huang, 2021. "In Situ Binder-Free and Hydrothermal Growth of Nanostructured NiCo 2 S 4 /Ni Electrodes for Solid-State Hybrid Supercapacitors," Energies, MDPI, vol. 14(21), pages 1-14, November.
    20. Daniel Rueda-García & María del Rocío Rodríguez-Laguna & Emigdio Chávez-Angel & Deepak P. Dubal & Zahilia Cabán-Huertas & Raúl Benages-Vilau & Pedro Gómez-Romero, 2019. "From Thermal to Electroactive Graphene Nanofluids," Energies, MDPI, vol. 12(23), pages 1-11, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:19:p:5228-:d:424916. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.